geomorphology
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Scale
Topics
-
Remotely sensed imagery has been used extensively in geomorphology since the availability of early Landsat data. Since that time, there has been a steady increase in the range of sensors offering data with increased spatial and spectral resolutions, from both government and commercial satellites. This has been augmented with an increase in the amount and range of airborne surveys carried out. Since 2000, digital elevation models have become widely available through the application of interferometric synthetic aperture radar, photogrammetry and laser altimetry (specifically LiDAR) with extensive uptake by geomorphologists. In addition, hyperspectral imaging, radiometrics and electromagentics have been made more accessible, whilst there has been increased use of close-range (<200 m) imaging techniques for very high resolution imaging. This paper reviews the primary sources for DEMs from satellite and airborne platforms, as well as briefly reviewing more traditional multi-spectral scanners, and radiometric and electromagnetic systems. Examples of the applications of these techniques are summarised and presented within the context of landscape pattern recognition and modelling. Finally, the wider issues of access to geographic information and data distribution are discussed.
-
This report describes the field survey carried out in Cockburn Sound, Western Australia by Geoscience Australia (GA) staff for the Coastal Geomorphology and Classification Subproject (CG) of the Coastal Water Habitat Mapping Project (CWHM). It documents the various sampling techniques and procedures used to collect surface and subsurface samples from the Sound; details of the vibracores and grab samples recovered and the proposed analyses to be performed on these samples. The results of the analysis of the grab samples will be used to classify the various surface sediment types encountered as well as map their distribution within Cockburn Sound. The analysis and interpretation of the vibracores will allow the reconstruction of the stratigraphic framework of Cockburn Sound. This information will be used in conjunction with the findings of the other subprojects in the CWHM Project. For example, it will assist in ground-truthing the results of the both the single and multi-beam sonar surveys that have and are to be carried out within Cockburn Sound by Curtin University. It will also provide key substrate information for incorporation into a more comprehensive benthic habitat classification for the sound.
-
Based upon a structural model for the LSC involving a large west-dipping thrust fault beneath the Lapstone Monocline, a recent study of seismic hazard in the Sydney Basin identified the LSC as a potential source for large and damaging earthquakes, and estimated a recurrence for MW >7.0 events at 15-30 ka (IGNS, 1999). The preliminary results presented here from Mountain Lagoon, a small lake abutting the Kurrajong Fault, indicate that only 15m of fault displacement has occurred since the catchments upstream became too dissected to generate significant fluvial flow. A qualitative assessment of the time required to reconstruct the catchment to a size where a sandstone fault barrier could be eroded suggests that the observed displacement is all that has occurred in the last several million years or more. This indicates potential recurrence rates for large earthquakes are, on average, in the order of hundreds of thousands of years or more.
-
Geomorphic banks were mapped in this study based on a GIS analysis of a 100 m bathymetry grid for the Great Barrier Reef produced by Beaman (2010). The bathymetric data were contoured at 5 m intervals and used to interpret the location of geomorphic bank features, defined as having at least one steep (i.e. greater than ~2 degrees) slope rising more than 15 m above the level of surrounding seafloor. All banks were digitised by hand aided using three-dimensional imagery. Bank polygons were created in ArcGIS with the base of slope taken as the outer edge of the bank. Mean bank elevation estimates thus include the bank slopes as well as planar bank-tops. Only banks occurring on the continental shelf of the Great Barrier Reef between the 20 and 200 m isobaths, and between the latitudes of 10 to 25° S were included. Disclaimer: Geoscience Australia gives no warranty regarding the data downloads provided herein nor the data's accuracy, completeness, currency or suitability for any particular purpose. Geoscience Australia disclaims all other liability for all loss, damages, expense and costs incurred by any person as a result of relying on the information in the data downloads.
-
Antarctic ice shelves and fast flowing ice streams are key drainage features of the Antarctic Ice Sheet and their behaviour determines the sensitivity of the ice sheet to climate change and sea level rise. Some fast flowing ice streams are thinning rapidly and could be the 'soft underbelly' of the East Antarctic Ice sheet. Processes across the grounding zone are important in understanding the retreat behaviour of ice streams but are poorly understood because of the difficulty of accessing the region. The Antarctic Shelf preserves geomorphic features and sedimentary structures left by ice retreat which can provide insights into processes in and close to the grounding zone. Sidescan sonar records from Prydz Bay image a range of features that reflect changes in processes across the Amery Ice Shelf grounding zone during retreat after the Last Glacial Maximum. The major features identified are: Mega-scale Glacial Lineations Linear ridges of sediment formed by moulding of mobile subglacial sediment parallel to ice flow. Flutes and Mega flutes - Smaller linear ridges moulded by ice flow. Inter-flute dunes - Large bedforms formed by bottom currents flowing the grounding zone in the sub-ice shelf cavity. Transverse steps - Ice flow parallel ridges that terminate in steps running oblique to normal to the ice flow direction. Sinuous ridges (Eskers) - Gently sinuous ridges that run generally parallel to obliquely across fluted surfaces. Polygonal crevasse infills - Irregular polygonal ridges on the crest of grounding zone wedges. The presence of fluted and mega-scale glacial lineations indicates that the ice moved over an unfrozen, deforming bed in the zone up stream of the grounding zone. For most of the Amery Ice Shelf, the inter-flute dunes reflect strong thermohaline circulation in the ice shelf cavity. Sand and gravel recovered in cores from beneath the Amery Ice Shelf indicate significant current speeds, possibly enhanced by tidal pumping.
-
The coastal zone is arguably the most difficult geographical region to capture as data because of its dynamic nature. Yet, coastal geomorphology is fundamental data required in studies of the potential impacts of climate change. Anthropogenic and natural structural features are commonly mapped individually, with their inherent specific purposes and constraints, and subsequently overlain to provide map products. This coastal geomorphic mapping project centered on a major coastal metropolitan area between Lake Illawarra and Newcastle, NSW, has in contrast classified both anthropogenic and natural geomorphological features within the one dataset to improve inundation modelling. Desktop mapping was undertaken using the Australian National Coastal Geomorphic (Polygon) Classification being developed by Geoscience Australia and supported by the Department of Climate Change. Polygons were identified from 50cm and 1m aerial imagery. These data were utilized in parallel with previous maps including for example 1:25K Quaternary surface geology, acid sulphate soil risk maps as well as 1:100K bedrock geology polygon maps. Polygons were created to capture data from the inner shelf/subtidal zone to the 10 m contour and include fluvial environments because of the probability of marine inundation of freshwater zones. Field validation was done as each desktop mapping section was near completion. This map has innovatively incorporated anthropogenic structures as geomorphological features because we are concerned with the present and future geomorphic function rather than the past. Upon completion it will form part of the National Coastal Geomorphic Map of Australia, also being developed by Geoscience Australia and utilized in conjunction with Smartline.
-
The ~900 km long Darling Scarp in Western Australia is one of the most prominent linear topographic features on Earth. Despite the presence of over-steepened reaches in all westerly flowing streams crossing the scarp, and significant seismic activity within 100 km of the scarp, there is no historical seismicity and no reported evidence for Quaternary tectonic displacements on the underlying Darling Fault. Consequently, it is unclear whether the scarp is a rapidly evolving landform responding to recent tectonic and/or climatic forcing or a more slowly evolving landform. In order to quantify late Quaternary rates of erosion and scarp relief processes, we obtained measurements of the cosmic-ray produced nuclide beryllium-10 (10Be) from outcropping bedrock surfaces along the scarp summit and face, in valley floors, and at stream knickpoints. Erosion rates of bedrock outcrops along the scarp summit surface range from 0·5 to 4·0 m Myr-1. These are in the same range as erosion rates of 2·1 to 3·6 m Myr-1 on the scarp face and similar to river incision rates of 2·6 to 11·0 m Myr-1 from valley floor bedrock straths, indicating that the Darling Scarp is a slowly eroding ‘steady state’ landform, without any significant contemporary relief production over the last several 100 kyr and possibly several million years. Knickpoint retreat rates determined from 10Be concentrations at the bases of two knickpoints on small streams incised into the scarp are 36 and 46 m Myr-1. If these erosion rates were sustained over longer timescales, then associated knickpoints may have initiated in the mid-Tertiary to early Neogene, consistent with early-mid Tertiary marginal uplift. Ongoing maintenance of stream disequilibrium longitudinal profiles is consistent with slow, regional base level lowering associated with recently proposed continental-scale tilting, as opposed to differential uplift along discrete faults. Cosmogenic 10Be analysis provides a useful tool for interpreting the palaeoseismic history of intraplate near-fault landforms over 105 to 106 years.
-
moose
-
During the late Neogene, the Lambert Glacier-Amery Ice Shelf drainage system flowed across Prydz Bay and showed several changes in flow pattern. In the Early Pliocene, the Lambert Glacier ice stream reached the shelf edge and built a trough mouth fan on the upper continental slope. This was associated with an increase in ice discharge from the Princess Elizabeth Land coast into Prydz Bay. The trough mouth fan consists mostly of debris flow deposits derived from the melting out of subglacial debris at the grounding line at the continental shelf edge. The composition of debris changes at around 1.1 Ma BP from material derived from erosion of the Lambert Graben and Prydz Bay Basin to mostly basement derived material. This probably results from a reduction in the depth of erosion and hence the volume of ice in the system. In the trough mouth fan, debris flow intervals are separated by thin mudstone horizons deposited when the ice had retreated from the shelf edge. Age control in an Ocean Drilling Program hole indicates that most of the trough mouth fan was deposited prior to the Brunhes Matuyama Boundary (780 ka BP). This stratigraphy indicates that extreme ice advances in Prydz Bay were rare after the mid Pleistocene, and that ice discharge from Princess Elizabeth Land became more dominant than the Lambert Glacier ice in shelf grounding episodes, since the mid Pleistocene. Mechanisms that might have produced this change are extreme inner shelf erosion and/or decreasing ice accumulation in the interior of East Antarctica. We interpret this pattern as reflecting the increasing elevation of coastal ice through time and the increasing continentality of the interior of the East Antarctic Ice Sheet. The mid Pleistocene change to 100 ka climatic and sea level cycles may also have affected the critical relationship between ice dynamics and the symmetry or asymmetry of the interglacial/glacial climate cycle duration.
-
The Queen Charlotte Fault (QCF) off western Canada is the northern equivalent to the San Andreas Pacific - America boundary. Geomorphology and surface processes associated with the QCF system have been revealed in unprecedented detail by recent seabed mapping surveys. The QCF bisects the continental shelf of British Columbia forming a fault-valley that is visible in multibeam sonar bathymetry data. The occurrence of the fault within a valley, and its association with what appear to be graben structures, suggest the fault may exhibit minor rifting (extension) as well as strike-slip motions in the region offshore from Haida Gwaii (Queen Charlotte Islands). Fault-valley formation, slumping and stranding of submarine canyon thalwegs are geomorphic expressions of QCF tectonism, illustrating the general applications of multibeam technology to marine geophysical research.