From 1 - 10 / 720
  • This map is part of a series which comprises 50 maps which covers the whole of Australia at a scale of 1:1 000 000 (1cm on a map represents 10km on the ground). Each standard map covers an area of 6 degrees longitude by 4 degrees latitude or about 590 kilometres east to west and about 440 kilometres from north to south. These maps depict natural and constructed features including transport infrastructure (roads, railway airports), hydrography, contours, hypsometric and bathymetric layers, localities and some administrative boundaries, making this a useful general reference map.

  • New ASTER GIS products in the Gawler-Curnamona Geoscience Australia, in collaboration with CSIRO and PIRSA are releasing a suite of 14 new ASTER mosaiced products for a significant part of the Gawler-Curnamona region. About 110 ASTER scenes have been mosaiced and processed into geoscience products that can be quickly and easily integrated with other datasets in a GIS. The products have been pre-processed and calibrated with available HyMap data and provide basic mineral group information such as Ferric Oxide abundance, AlOH group distribution as well as mosaiced and levelled false colour and regolith ratio images. These images, along with accompany notes are available for free ftp download online at: ftp://ftp.arrc.csiro.au/NGMM/Gawler-Curnamona ASTER Project/

  • Soil mapping at the local- (paddock), to continental-scale, may be improved through remote hyperspectral imaging of surface mineralogy. This opportunity is demonstrated for the semiarid Tick Hill test site (20 km2) near Mount Isa in western Queensland. The study of this test site is part of a larger Queensland government initiative involving the public delivery of 25,000 km2 of processed airborne hyperspectral mineral maps at 4.5 m pixel resolution to the mineral exploration industry. Some of the mineral maps derived from hyperspectral imagery for the Tick Hill area include the abundances and/or physicochemistries (chemical composition and crystal disorder) of dioctahedral clays (kaolin, illite-muscovite and Al smectite, both montmorillonite and beidellite), ferric/ferrous minerals (hematite/goethite, Fe2+-bearing silicates/carbonates) and hydrated silica (opal) as well as soil water (bound and unbound) and green and dry (cellulose/lignin) vegetation. Validation of these hyperspectral mineral products is based on field soil sampling and laboratory analyses (spectral reflectance, X-ray diffraction, scanning electron microscope and electron backscatter). The mineral maps show more detailed information regarding the surface composition compared with the published soil and geology (1:100,000 scale) maps and airborne radiometric imagery (collected at 200 m line spacing). This mineral information can be used to improve the published soil mapping but also has the potential to provide quantitative information suitable for soil and water catchment modeling and monitoring.

  • Geoscience Australia has created a DVD 'Landsat Metadata Map Ups of Indonesia' for the Indonesian Ministry of Forestry (MoF). The DVD contains Landsat metadata information sourced from USGS and GISTDA for selected years based on the catalogue searches that Geoscience Australia has done to-date. This is one of the action items from the Bali Remote Sensing workshop in February 2009.

  • Explaining spatial variation and habitat complexity of benthic habitats from underwater video through the use of maps. Different methodologies currently used to process and analyse percent cover of benthic organisms from underwater video will be addressed and reviewed.

  • Continent-scale digital maps of mineral information of the Earth's land surface are now achievable using geoscience-tuned remote sensing systems. Multispectral ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data and the derived mineral information provide the opportunity for characterization of geological and soil processes including the nature of the regolith (weathered) cover and alteration footprints of hydrothermal ore deposits [1,2]. This paper describes work from the Western Australian (WA) Centre of Excellence for 3D Mineral Mapping, which is part of CSIRO's Minerals Down Under Flagship and supported by Geoscience Australia and other Australian geosurveys, to generate a series of ASTER mineral group maps (both content and composition) for the whole Australian continent at a 30 m pixel resolution.. The input ASTER L1B radiance-at-sensor data were provided by ERSDAC (Japan), NASA and the USGS. These data were corrected for instrument, illumination, atmospheric and geometric effects. About 4000 ASTER scenes from an archive of >30,000 scenes were selected to generate the continent-scale ASTER map and Hyperion scenes were used for reduction and validation of the cross-calibrated ASTER mosaic to reflectance. Band ratios [2] were applied as base algorithms and masked to remove complicating effects, such as green vegetation, clouds and deep shadow. Types of generated geoscience products include (1) mineral group content maps based on continuum-band depths (e.g. Al-OH group content mapping Al-OH clays like muscovite, kaolinite and montmorillonite) and (2) mineral group composition maps (e.g. Al-OH group composition ranging from Si-rich white mica through to well ordered kaolinite) based on ratios but masked using the relevant content products.

  • The Leeuwin Current has significant ecological impact on the coastal and marine ecosystem of south-western Australia. This study investigated the spatial and temporal dynamics of the Leeuwin Current using monthly MODIS SST dataset between July 2002 and December 2012. Topographic Position Index layers were derived from the SST data for the mapping of the spatial structure of the Leeuwin Current. The semi-automatic classification process involves segmentation, 'seeds' growing and manual editing. The mapping results enabled us to quantitatively examine the current's spatial and temporal dynamics in structure, strength, cross-shelf movement and chlorophyll a characteristic. It was found that the Leeuwin Current exhibits complex spatial structure, with a number of meanders, offshoots and eddies developed from the current core along its flowing path. The Leeuwin Current has a clear seasonal cycle. During austral winter, the current locates closer to the coast (near shelf break), becomes stronger in strength and has higher chlorophyll a concentrations. While, during austral summer, the current moves offshore, reduces its strength and chlorophyll a concentrations. The Leeuwin Current also has notable inter-annual variation due to ENSO events. In El Niño years the current is likely to reduce strength, move further inshore and increase its chlorophyll a concentrations. The opposite occurs during the La Niña years. In addition, this study also demonstrated that the Leeuwin Current has a significantly positive influence over the regional nutrient characteristics during the winter and autumn seasons.

  • Geoscience Australia (GA) is a leading promoter of airborne electromagnetic (AEM) surveying for regional mapping of cover thickness, under-cover basement geology and sedimentary basin architecture. Geoscience Australia flew three regional AEM surveys during the 2006-2011 Onshore Energy Security Program (OESP): Paterson (Western Australia, 2007-08); Pine Creek-Kombolgie (Northern Territory, 2009); and Frome (South Australia, 2010). Results from these surveys have produced a new understanding of the architecture of critical mineral system elements and mineral prospectivity (for a wide range of commodities) of these regions in the regolith, sedimentary basins and buried basement terrains. The OESP AEM survey data were processed using the National Computational Infrastructure (NCI) at the Australian National University to produce GIS-ready interpretation products and GOCADTM objects. The AEM data link scattered stratigraphic boreholes and seismic lines and allow the extrapolation of these 1D and 2D objects into 3D, often to explorable depths (~ 500 m). These data sets can then be combined with solid geology interpretations to allow researchers in government, industry and academia to build more reliable 3D models of basement geology, unconformities, the depth of weathering, structures, sedimentary facies changes and basin architecture across a wide area. The AEM data can also be used to describe the depth of weathering on unconformity surfaces that affects the geophysical signatures of underlying rocks. A number of 3D models developed at GA interpret the under-cover geology of cratons and mobile zones, the unconformity surfaces between these and the overlying sedimentary basins, and the architecture of those basins. These models are constructed primarily from AEM data using stratigraphic borehole control and show how AEM data can be used to map the cross-over area between surface geological mapping, stratigraphic drilling and seismic reflection mapping. These models can be used by minerals explorers to more confidently explore in areas of shallow to moderate sedimentary basin cover by providing more accurate cover thickness and depth to target information. The impacts of the three OESP AEM surveys are now beginning to be recognised. The success of the Paterson AEM Survey has led to the Geological Survey of Western Australia announcing a series of OESP-style regional AEM surveys for the future, the first of which (the Capricorn Orogen AEM Survey) completed acquisition in January 2014. Several new discoveries have been attributed to the OESP AEM data sets including deposits at Yeneena (copper) and Beadell (copper-lead-zinc) in the Paterson region, Thunderball (uranium) in the Pine Creek region and Farina (copper) in the Frome region. New tenements for uranium, copper and gold have also been announced on the results of these surveys. Regional AEM is now being applied in a joint State and Commonwealth Government initiative between GA, the Geological Survey of Queensland and the Geological Survey of New South Wales to assess the geology and prospectivity of the Southern Thomson Orogen around Hungerford and Eulo. These data will be used to map the depth of the unconformity between the Thomson Orogen rocks and overlying sedimentary basins, interpret the nature of covered basement rocks and provide more reliable cover thickness and depth to target information for explorers in this frontier area.

  • This study tested the performance of 16 species models in predicting the distribution of sponges on the Australian continental shelf using a common set of environmental variables. The models included traditional regression and more recently developed machine learning models. The results demonstrate that the spatial distributions of sponge as a species group can be successfully predicted. A new method of deriving pseudo-absence data (weighted pseudo-absence) was compared with random pseudo-absence data - the new data were able to improve modelling performance for all the models both in terms of statistics (~10%) and in the predicted spatial distributions. Overall, machine learning models achieved the best prediction performance. The direct variable of bottom water temperature and the resource variables that describe bottom water nutrient status were found to be useful surrogates for sponge distribution at the broad regional scale. This study demonstrates that predictive modelling techniques can enhance our understanding of processes that influence spatial patterns of benthic marine biodiversity. Ecological Informatics