From 1 - 10 / 1057
  • Improving techniques for mapping land surface composition at regional- to continental-scale is the next step in delivering the benefits of remote sensing technology to Australia. New methodologies and collaborative efforts have been made as part of a multi-agency project to facilitate uptake of these techniques. Calibration of ASTER data with HyMAP has been very promising, and following an program in Queensland, a mosaic has been made for the Gawler-Curnamona region in South Australia. These programs, undertaken by Geoscience Australia, CSIRO, and state and industry partners, aims to refine and standardise processing and to make them easily integrated with other datasets in a GIS.

  • Magnetotelluric (MT) data have been acquired in 2008 and 2009 at 40 broadband (0:01 s to 500 s) and 12 long-period (10 s to 10 000 s) sites along the east-west deep seismic reflection transect of northern Eyre Peninsula, South Australia. The MT survey is a joint project between the University of Adelaide and Geoscience Australia and is funded by the Australian Government as part of the Onshore Energy Security Program. Long-period sites are spaced 20 km apart and broadband sites infill this spacing to 10 km with also some 5 km spacing. This ensures sufficient coverage to map the upper crustal to upper mantle structures beneath northern Eyre Peninsula.

  • Abstract for the Asia Oceania Geosciences Society (AOGS) conference on 24-28 June 2013.

  • Volcanic ash represents a serious hazard to communities living in the vicinity of active volcanoes in developing countries like Indonesia. Geoscience Australia, the Australia-Indonesia Facility for Disaster Reduction (AIFDR) and the Indonesian Centre for Volcanology and Geohazard Mitigation (CVGHM) have adapted an existing open source volcanic ash dispersion model for use in Indonesia. The core model is the widely used volcanic ash dispersion model FALL3D. A python wrapper has been developed, which simplifies the use of FALL3D for those with little or no background in computational modelling. An application example is described here for Gunung Ciremai in West Java, Indonesia. Scenarios were run using eruptive parameters within the acceptable range of possible future events for this volcano, granulometry as determined through field studies and a meteorological dataset that represented a complete range of possible wind conditions expected during the dry and rainy seasons for the region. Implications for varying degrees of hazard associated with volcanic ash ground loading on nearby communities for dry versus rainy season wind conditions is discussed. Communities located on the western side of Gunung Ciremai are highly susceptible to volcanic ash ground loading regardless of the season whereas communities on the eastern side are found to be more susceptible during the rainy season months than during the dry. This is attributed to prevailing wind conditions during the rainy season that include a strong easterly component. These hazard maps can be used for hazard and impact analysis and can help focus mitigation efforts on communities most at risk.

  • Global climate change is putting Australia's infrastructure and in particular coastal infrastructure at risk. More than 80% of Australians live within the coastal zone. Almost 800,000 residences are within 3km of the coast and less than 6m above sea level. Much of Australia's land transport is built around road and rail infrastructure which is within the threatened coastal zone. A significant number of Australia's ports, harbours and airports are under threat. Australia's coastal zone contains several major cities, and supports agriculture, fisheries, tourism, coastal wetlands and estuaries, mangroves and other coastal vegetation, coral reefs, heritage areas and threatened species or habitats. Sea level rise is one physical effect of rising sea temperatures and is estimated at about 0.146m for 2030 (IPCC 2007) and up to 1.1m for 2100 (Antarctic and Climate Ecosystems CRC). The warming is likely to result in increases in intensity of both extra-tropical and tropical storms (spatially dependent) which are predicted to increase storm surge and severe wind hazard. Beaches, estuaries, coastal wetlands, and reefs which have adapted naturally to past changes in climate (storminess) and sea level over long time scales, now are likely to face faster rates of change. In many cases landward migration may be blocked by human land uses and infrastructure. Adaptation options include integrated coastal zone assessments and management; redesign, rebuilding, or relocation of capital assets; protection of beaches, dunes and maritime infrastructure; development zone control; and retreat plans.

  • Severe wind has major impacts on exposed human settlements and infrastructure, while climate change is expected to increase the severe wind hazard in many regions of Australia. The Risk and Impact Analysis Group (RIAG) in Geoscience Australia (GA) has developed a series of techniques to analyse the impact of severe wind imposed on the residential buildings under current and future climate. The process includes four components: hazard, exposure, vulnerability and risk. Severe wind hazard represents site specific wind speed values for different return periods (e.g. 500-year, 2000-year return periods), which may be derived by the wind loading standard (AS/NZS 1170.2), or be a result of modelling for current or future climates. GA has developed a National Exposure Information System (NEXIS), a repository of spatial and structural information of infrastructure exposed and vulnerable to natural hazards. NEXIS has also been extended to consider the number of future residential structures by utilising simple spatial relationships. Using an expert evaluation process, GA has developed a series of fragility curves which relate wind speed to the expected level of damage to residential buildings (measured as a percentage of the total replacement cost) in specific regions in Australia. These curves include consideration of factors such as building location, age, roof material, wall material, and so on. Given a certain intensity of severe wind imposed on a certain type of residential building in a specific region, the physical impact to a community can be determined in terms of the economic loss and casualties. By applying above concepts and procedures, based on sample data from the selected cities, we have integrated these three components (hazard, residential buildings exposure and vulnerability) within a computational framework to derive severe wind risk under both current climate and for a range of climate scenarios. These processes will be utilised for the assessment of climate change adaptation strategies concerning structural wind loading.

  • Multibeam sonar swath-mapping has revealed small submarine volcanic cones on the northeastern Lord Howe Rise (LHR), a submerged ribbon continent. Two such cones, aligned NNW and 120 km apart, were dredged at 23-24Degrees S. Water depth is about 1150 m nearby: the southern cone rises to 750 m and the northern to 900 m. Volcanic rocks dredged from the cones are predominantly highly altered hyaloclastites with minor basalt. The clasts are mostly intensely altered vesicular brownish glass with lesser basalt, in zeolitic, clayey, micritic or ferruginous cement. Lavas and hyaloclastites contain altered phenocrysts of olivine and plagioclase, and fresh clinopyroxene. The latter have compositions between acmite and Ti-augite, and match well clinopyroxene phenocrysts in undersaturated intraplate basanitic mafic lavas. Interbedded micrites in the volcaniclastics represent calcareous ooze that was deposited with (or later than) the volcanic pile. Foraminifera indicate that the oldest micrite is late Early Miocene (~16 Ma), and that the original ooze was deposited in cool water. Late Miocene to Pliocene micrites, presumed to be later infillings, all contain warm water forms. This evidence strongly suggests that both cones formed in pelagic depths in the Early Miocene. Ferromanganese crusts from the two cones are up to 7 cm thick and similar physically, but different chemically. The average growth rate is 3 mm/m.y.. Copper, nickel and cobalt content are relatively high in the north, but copper does not exceed 0.08 wt %, nickel 0.65% and cobalt 0.25%. The Mn:Fe ratio is high in the south (average 13.7) suggesting strong hydrothermal influence. Such small volcanic cones related to intraplate hotspot-type magmatism may occur in extensive fields like those off southern Tasmania. On Lord Howe Rise, the known small volcanic cones coincide with broad gravity highs in areas of shallow continental basement. The highs probably represent Neogene plume-related magmatism. The thick continental crust may dissipate and spread the magma widely, whereas plumes may penetrate thin oceanic crust more readily and build larger edifices. The correspondence of the ages derived from micropalaeontology and from extrapolating from nearby dated hotspot traces support such a genesis. Accordingly, gravity highs in the right setting may help predict fields of small volcanic seamounts.

  • The term "Smartline" refers to a GIS line map format which can allow rapid capture of diverse coastal data into a single consistently classified map, which in turn can be readily analysed for many purposes. This format has been used to create a detailed nationally-consistent coastal geomorphic map of Australia, which is currently being used for the National Coastal Vulnerability Assessment (NCVA) as part of the underpinning information for understanding the vulnerability to sea level rise and other climate change influenced hazards such as storm surge. The utility of the Smartline format results from application of a number of key principles. A hierarchical form- and fabric-based (rather than morpho-dynamic) geomorphic classification is used to classify coastal landforms in shore-parallel tidal zones relating to but not necessarily co-incident with the GIS line itself. Together with the use of broad but geomorphically-meaningful classes, this allows Smartline to readily import coastal data from a diversity of differently-classified prior sources into one consistent map. The resulting map can be as spatially detailed as the available data sources allow, and can be used in at least two key ways: Firstly, Smartline can work as a source of consistently classified information which has been distilled out of a diversity of data sources and presented in a simple format from which required information can be rapidly extracted using queries. Given the practical difficulty many coastal planners and managers face in accessing and using the vast amount of primary coastal data now available in Australia, Smartline can provide the means to assimilate and synthesise all this data into more usable forms.

  • In 1994, the United Nations Regional Cartographic Conference for Asia and the Pacific resolved to establish a Permanent Committee comprising of national surveying and mapping agencies to address the concept of establishing a common geographic information infrastructure for the region. This resolution subsequently led to the establishment of the Permanent Committee for GIS Infrastructure for the Asia and Pacific (PCGIAP). One of the goals of the PCGIAP was to establish and maintain a precise understanding of the relationship between permanent geodetic stations across the region. To this end, campaign-style geodetic-GPS observations, coordinated by Geoscience Australia, have been undertaken throughout the region since 1997. In this presentation, we discuss the development of an Asia Pacific regional reference frame based on the PCGIAP GPS campaign data, which now includes data from 417 non-IGS GPS stations and provides long term crustal deformation estimates for over 200 GPS stations throughout the region. We overview and evaluate: our combination strategy with particular emphasis on the alignment of the solution onto the International Terrestrial Reference Frame (ITRF); the sensitivity of the solution to reference frame site selection; the treatment of regional co-seismic and post-seismic deformation; and the Asia-Pacific contribution to the International Association of Geodesy (IAG) Working Group on "Regional Dense Velocity Fields". The level of consistency of the coordinate estimates with respect to ITRF2005 is 6, 5, 15 mm, in the east, north and up components, respectively, while the velocity estimates are consistent at 2, 2, 6 mm/yr in the east, north and up components, respectively.