bathymetry
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
<div>The Abbot Point to Hydrographers Passage bathymetry survey was acquired for the Australian Hydrographic Office (AHO) onboard the RV Escape during the period 6 Oct 2020 – 16 Mar 2021. This was a contracted survey conducted for the Australian Hydrographic Office by iXblue Pty Ltd as part of the Hydroscheme Industry Partnership Program. The survey area encompases a section of Two-Way Route from Abbot Point through Hydrographers Passage QLD. Bathymetry data was acquired using a Kongsberg EM 2040, and processed using QPS QINSy. The dataset was then exported as a 30m resolution, 32 bit floating point GeoTIFF grid of the survey area.</div><div>This dataset is not to be used for navigational purposes.</div>
-
This product is no longer available.
-
Geoscience Australia (GA) has an active research interest in using multibeam bathymetry, backscatter data and their derivatives together with geophysical data, sediment samples, biological specimens and underwater video/still footage to create seabed habitat maps. This allows GA to provide spatial information about the physical and biological character of the seabed to support management of the marine estate. The main advantage of using multibeam systems over other techniques is that they provide spatially continuous maps that can be used to relate to physical samples and video observations. Here we present results of a study that aims to reliably and repeatedly delineate hard and soft seabed substrates using bathymetry, backscatter and their derivatives. Two independent approaches to the analysis of multibeam data are tested: (i) a two-stage classification-based clustering method, based solely on acoustic backscatter angular response curves, is used to derive a substrate type map. (ii) a prediction-based classification is produced using the Random Forest method based on bathymetry, backscatter data and their derivatives, with support from video and sediment data. Data for the analysis were collected by Geoscience Australia and the Australian Institute of Marine Science on the Van Dieman Rise in the Timor Sea using RV Solander. The mapped area is characterised by carbonate banks, ridges and terraces that form hardground with patchy sediment cover, and valleys and plains covered by muddy sediment. Results from the clustering method of hard and soft seabed types yielded classification accuracies of 78 - 87% when evaluated against seabed types as observed in underwater video. The prediction-based approach achieved a classification accuracy of 92% based on 10-fold cross-validation. These results are consistent with the current state of knowledge on geoacoustics. Patterns associated with geomorphic facies and biological categories are also observed. These results demonstrate the utility of acoustic data to broadly and objectively characterise the seabed substrate and thereby inform our understanding of the distribution of key habitat types.
-
A range of physical descriptors of the seabed can potentially be used as surrogates for defining patterns of benthic marine biodiversity, including bathymetry, geomorphology and sediment type. These variables can be mapped, described and sampled across spatial scales that are of value to the management of the marine estate by providing a template for monitoring benthic ecosystems. As part of a four-year program (2007-2010) funded by the Australian Government, Geoscience Australia led marine surveys designed to collect robust datasets for the analysis of surrogacy relationships between a suite of physical variables and benthic biota in select areas of the Australian continental shelf. This paper focuses on results of the 2008 Carnarvon shelf survey, located within a Commonwealth Marine Park and adjacent to the World Heritage-listed Ningaloo Reef (Western Australia). High resolution multibeam sonar mapping, underwater video and benthic sampling revealed a complex geomorphology of ridges, mounds and sandy bedforms. The largest ridge extends 15 km alongshore is 20 m high and interpreted as a drowned forereef. Smaller ridges are ~1 km long, oriented northeast and preserve the form of aeolian dunes. Mounds are up to 5 m high and form extensive fields surrounded by flat sandy seabed. These ridges and mounds provide hardground habitat for diverse coral and sponge communities, whereas the surrounding sandy seafloor is characterised by few sessile benthic organisms. Multivariate analysis of these relationships is used to develop predictive models of benthic habitats, demonstrating the utility of high resolution physical data for informing management of these ecosystems.
-
The Australian exclusive economic zone (EEZ) contains1.6 million km2 of submarine plateaus, equal to about 13.8% of the world's known inventory of these features. This disproportionate occurrence of plateaus presents Australia with an increased global responsibility to understand and protect the benthic habitats and associated ecosystems. This special volume presents the results of two major marine surveys carried out on the Lord Howe Rise plateau during 2003 and 2007, during which benthic biological and geological samples, underwater photographs, video and multibean sonar bathymetry data were collected. The benthic habitats present on Lord Howe Rise include hard/rocky substrates covering a small area of volcanic peaks (around 31 km2) and parts of other larger seamounts (eg. the Lord Howe Island seamount) which support rich and abundant epifaunal assemblages dominated by suspension feeding invertebrates. These habitats appear to qualify as ecologically and biologically significant areas under the United Nations Convention on Biological Diversity (CBD) scientific selection criterion 1 (uniqueness or rarity), 4 (vulnerability, fragility, sensitivity or slow recovery) and 7 (naturalness). The collection of papers included in this special volume represents a major advance in knowledge about benthic habitats of the Lord Howe Rise, but also about the ecology of plateaus in general.
-
Lord Howe Island in the southwest Pacific Ocean is the subaerial remnant of a Late Miocene hot-spot volcano. Erosion of the island has formed a shallow (20 - 120 m) sub-tropical carbonate shelf 24 km wide and 36 km long. On the mid shelf an extensive relict coral reef (165 km2) surrounds the island in water depths of 30-40 m. The relict reef comprises sand sheet, macroalgae and hardground habitats. Inboard of the relict reef a sandy basin (mean water depth 45 m) has thick sand deposits. Outboard of the relict reef is a relatively flat outer shelf (mean depth 60 m) with bedrock exposures and sandy habitat. Infauna species abundance and richness were similar for sediment samples collected on the outer shelf and relict reef features, while samples from the sandy basin had significantly lower infauna abundance and richness. The irregular shelf morphology appears to determine the distribution and character of sandy substrates and local oceanographic conditions, which in turn influence the distribution of different types of infauna communities.
-
Map showing all of Australia's Maritime Jurisdiction north of approx 25CS . This includes areas around Cocos (Keeling) Islands and areas west of Christmas Island as well as those contiguous to the continent in the north. Map derived from one of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71985). Depicting Australia's extended continental shelf approved by the Commission on the Limits of the Continental Shelf in April 2008. Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. Map size 3m x 2m for Australian Customs and Border Protection Service. (for internal use only - not for publication)
-
No abstract available
-
This flythrough was produced on CD for a media launch held on 17/11/05 in Cairns.
-
This map shows various maritime boundaries and fishing agreements in the Southern Hemisphere on a background of General Bathymetric Chart of the Oceans (GEBCO-97). Map produced for Coastwatch, Australia Customs Service and the Department of Foreign Affairs and Trade to assist them in the tracking of foreign Fishing Vessels.