OGC:WCS
Type of resources
Keywords
Publication year
Service types
Topics
-
This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.
-
The sea level service is designed to be used within the Carbon Capture and Storage application for 3D visual representation. It is an elevation service that represents the sea and elevation 0.
-
<b>This service with existing dataset is migrated to a new server and the existing links will expire by the end of this year (31-Dec-2024). The replacement service is located at https://services.ga.gov.au/gis/rest/services/DEM_SRTM_1Second_2024/MapServer</b> This service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps.
-
<b>This service with existing dataset is migrated to a new server and the existing links will expire by the end of this year (31-Dec-2024). The replacement service is located at https://services.ga.gov.au/gis/rest/services/DEM_SRTM_1Second_over_Bathymetry_Topography_2024/MapServer</b> The Australian Bathymetry and Topography web service includes the topography of Australia and the bathymetry of the adjoining Australian Exclusive Economic Zone. The area selected does not include data from Australia's marine jurisdiction offshore from the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. The 2009 bathymetry data were compiled by Geoscience Australia from multibeam and single beam data, and along with the topography (onshore) data, was derived from multiple sources. As per the 2005 grid, the 0.0025 dd resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist) (Webster and Petkovic, 2005). In areas where no sounding data are available (in waters off the Australian shelf), the grid is based on the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO (Amante and Eakins, 2008) satellite derived bathymetry. The topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008).
-
This service is designed to be used within the Carbon Capture and Storage application for a 3D visual representation. It is an elevation service that represents 800m below the Digital Elevation Model (DEM) Shuttle Radar Topography Mission (SRTM) 1 Second over Australian Bathymetry Topography service. This is used as a basic gauge as to determine where CO2 should have enough pressure to be converted into a super fluid.
-
This web service provides access to datasets generated by the North Australian Craton (NAC) Iron Oxide Copper Gold (IOCG) Mineral Potential Assessment. Two outputs were created: a comprehensive assessment, using all available spatial data, limiting data where possible to capture mineral systems older than 1500 ma, and; a coverage assessment, which is constrained to data that have no reliance on outcrop or age of mineralisation.
-
This service provides access to airborne electromagnetics (AEM) derived conductivity grids in the Upper Darling Floodplain region. The grids represent 30 depth intervals from modelling of AEM data acquired in the Upper Darling Floodplain, New South Wales, Airborne Electromagnetic Survey (https://dx.doi.org/10.26186/147267), an Exploring for the Future (EFTF) project jointly funded by Geoscience Australia and New South Wales Department of Planning and Environment (NSW DPE). The AEM conductivity model delineates important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.
-
The National Geophysical Grids web coverage service (WCS) will provide a collection of magnetic, gravity and radiometric grids derived from various geophysical measurements made over continental Australia. This particular release will include magnetic, gravity and radiometric grids constructed in 2019, and migrated grids from 2015.
-
This web service contains a selection of remotely sensed raster products used in the Exploring for the Future (EFTF) East Kimberley Groundwater Project. Selected products were derived from LiDAR, Landsat (5, 7, and 8), and Sentinel-2 data. Datasets include: 1) mosaic 5 m digital elevation model (DEM) with shaded relief; 2) vegetation structure stratum and substratum classes; 3) Normalised Difference Vegetation Index (NDVI) 20th, 50th, and 80th percentiles; 4) Tasselled Cap exceedance summaries; 5) Normalised Difference Moisture Index (NDMI) and Normalised Difference Wetness Index (NDWI). Landsat spectral reflectance products can be used to highlight land cover characteristics such as brightness, greenness and wetness, and vegetation condition; Sentinel-2 datasets help to detect vegetation moisture stress or waterlogging; LiDAR datasets providing a five meter DEM and vegetation structure stratum classes for detailed analysis of vegetation and relief.
-
This service delivers airborne electromagnetics (AEM) derived conductivity grids for depth intervals representing the top 22 layers from AEM modelling in the West Musgrave region (https://dx.doi.org/10.26186/147969). The grids were generated from the AEM conductivity models released as part of the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves region. The AEM conductivity models resolve important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.