From 1 - 10 / 595
  • the broad geological blocks from Archaean in the west, through Proterozoic in the centre, to Palaeozoic-Cainozoic in the east, are well presented in the 3-D electrical conductivity model as simple lower conductivity structures. In addition, the model shows conductivity contrast in the western craton, characteristic of enhanced conductivity structures which separate the cratonic blocks, and enhanced conductivity anomalies presented in eastern Australia.

  • The National Flood Risk Informaiton Project (NFRIp) has produced a flyer for the Floodplain Management Association Conference on 19-22 May 2015 where the Australian Flood Risk Information Portal (AFRIP) will be promoted at a Geoscience Australia booth. NFRIP funded the revision of the guidelines as part of a $12m funding initiative by the Australia Government. The flyer promotes the three core activities of NFRIP; the Australian Flood Risk Information Portal, revision of Australian Rainfall and Runoff guidelines and Water Observations from Space (WOfS).

  • Geological Survey of South Australia SAREIC Technical Day conference 2015

  • This dataset is the most current national compilation of catchment scale land use data for Australia (CLUM), as at March 2015. It is a seamless raster dataset that combines land use data for all state and territory jurisdictions, compiled at a resolution of 50 metres by 50 metres. It has been compiled from vector land use datasets collected as part of state and territory mapping programs through the Australian Collaborative Land Use and Management Program (ACLUMP). Catchment scale land use data was produced by combining land tenure and other types of land use information, fine-scale satellite data and information collected in the field. The date of mapping (1997 to 2014) and scale of mapping (1:20 000 to 1:250 000) vary, reflecting the source data capture date and scale. This information is provided in a supporting polygon dataset.

  • Extensive historical (anecdotal) information covering the past 3 decades indicated that the remote and pristine Nadgee lake estuary in southern NSW had a benthic dominated ecology. All descriptions indicated that it had oligotrophic waters with dense cover of benthic macropyhtes and associated avifauna. When we arrived at Nadgee in late 2008 for the first scientific aquatic survey (ever) it looked nothing like this. The lake was dominated by an intense microalgal bloom and no macrophytes were present. Why? Entrance opening and closure are the major disturbances in an intermittent estuary like Nadgee, but there are no records of past entrance behaviour for such a remote site. This paper describes the use of Geoscience Australia's recent compilation and rectification of Landsat images (the Australian Geoscience Data Cube), along with the application of a consistent water detection tool for all pixels in that compilation, to determine opening and closing regimes. The output of the analyses provides an indication of whether a pixel was wet or dry (or not able to be determined) for all images over the entire 27 year's worth of data. Water level records measured by OEH since 2009 were used to ground-truth the remote sensed data. We can now determine when, over the past 27 years, the Lake opened and how long the water level remained low. This information, along with an understanding of the ecology of the primary macrophytes has been used to provide some possible models that explain when and why the fundamental shift from benthic to pelagic may have occurred.

  • Geoscience Australia in collaboration with the Geological Survey of Western Australia (Royalties for Regions Exploration Incentive Scheme), the Department of State Development South Australia and AuScope funded the Eucla-Gawler 2D deep seismic survey. The seismic survey acquisition and processing were managed and processed by Geoscience Australia. Geokinetics Australasia Ltd were contracted to collect the Eucla-Gawler 2D deep seismic reflection survey from November 2013 to February 2014. Deep seismic reflection data and gravity readings were acquired along the 834 km seismic line. Magnetotelluric (MT) data (Duan et al, 2015) were also acquired along the seismic line after the completion of the seismic survey. The main objectives of the project are to acquire deep crustal seismic data to (Geoscience Australia, 2013): (1) Image the crustal architecture of the geology underlying the Eucla Basin and its relationship to the Gawler Craton to the east and the Yilgarn Craton to the west; (2) Establish the subsurface extent of the Eucla Basin and look for large structural zones that may have provided fluid pathways for mineralisation.

  • Diagram produced for the Department of Industry and Science to depict those areas of water adjacent to SA that fall under the OPGGS Act, Petroeum (Seas and Submerged Lands) Act 1982 (SA) and Petroleum and Geothermal Energy Act 2000 (SA).

  • This dynamic map service will be used to provide reference layers for the Department of Industry for use in the Multi Criteria Site Analysis (MCSA) for the RadWaste Project. This MCSA will be used to determine an appropriate location for establishing a radioactive waste storage facility.

  • InaSAFE is free and open source software for developing realistic disaster impact scenarios for better disaster planning and response. Originally developed in Indonesia, it is now being used in many countries around the world to inform disaster management decision making with a strong scientific evidence base. Designed to be simple to use, InaSAFE can rapidly output the estimated impacts of a hazard event on a given exposure dataset and translate this information into a series of questions targeting particular disaster management actions. This supports disaster managers to make better decisions about the resources that they may need to respond to a disaster event. This presentation will demonstrate case studies of InaSAFE use for a range of hazards (earthquake, tsunami, volcanic ash and fire) for locations in Australia and the region. This will demonstrate InaSAFE's capability and its applicability to a diverse range of disaster management problems.

  • How we use crystallography Although the discipline of Geology is more than just rocks, the study of rocks and minerals make up a large part of our work. We analyse rocks and minerals from across Australia from samples collected under the sea, at the surface or from deep drill holes. Recently for example, our Minerals programme has drilled 14 holes through young cover to gather samples of basement rocks believed to be prospective for copper mineralisation in western Victoria.