From 1 - 10 / 77
  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP), and thin section descriptions for four samples of plutonic and sedimentary rocks from the Captains Flat 1:50, 000 special map sheet, Eastern Lachlan Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012 and 2013. The four samples (Table 1.1 and Figure 1.1) were collected from CANBERRA (small and large capitals refer to map sheet names in the 1:100 000 and 1:250 000 Topographic Series respectively); one sample from CANBERRA (northcentral CANBERRA), two from MICHELAGO (southcentral CANBERRA) and one from ARALUEN (southcentral CANBERRA).

  • The Congararra 2 borehole was drilled approximately 73 km NNW of Bourke, NSW/ The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.

  • The Janina 1 borehole was drilled approximately 110 km W of Bourke, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for thirty-five samples of plutonic rocks from the New England Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012-2014.

  • The late Permian Wandsworth Volcanic Group (WVG) in the southern New England Orogen (SNEO) is dominated by a monotonous series of amalgamated rhyodacitic to felsic eruptives, with minor interbedded flows, intrusives and sediments. The area enclosing known exposures of the WVG cover more than 30,000 km2, with a minimum thickness of 2 km. The top of the succession, as well as the vast majority of the pile representing non-welded material, has not been preserved. Field relationships indicate a broadly contemporaneous (though not necessarily genetic) relationship with late Permian granite magmatism, while Triassic plutons (typically in the range 246-243 Ma) intrude the WVG. SHRIMP U-Pb zircon dating indicates ages around 256.4 ± 1.6 Ma for basal units of the WVG, and 254.1 ± 2.2 Ma for the youngest preserved member of the WVG (Dundee Rhyodacite), defining a short period of substantial intermediate to acid eruptive volcanism. The compositionally unevolved Drake Volcanics to the northeast are older (264.4 ± 2.5 Ma) while those at Halls Peak are older still (Early Permian). Granites of the I-type Moonbi and Uralla Supersuites are dominantly 256-251 Ma and thus overlap in timing (and space) with the WVG event. Interestingly, many mineralized leucogranites (e.g. Parlour Mountain, Oban River, Gilgai) which were formerly regarded as Triassic are now established as synchronous with the Moonbi and Uralla Supersuites and the WVG. The age range of eruption of the WVG permitted by the SHRIMP results (~6 Ma) has been further constrained by CA-ID-TIMS U-Pb zircon analysis which yielded oldest and youngest ages of 255.54 ± 0.16 Ma and 253.26 ± 0.15 Ma respectively, indicating a maximum eruptive time range of ~2 Ma for the preserved pile. Our new results coincide with those determined from CA-ID-TIMS dating of tuffs in the Sydney and Gunnedah Basins. WVG exposures at Attunga are exactly (within ~0.1 Ma) coincident with the age of tuffs within the Trinkey Formation located in the Gunnedah Basin to the west, and the Dundee Rhyodacite is similarly closely matched to the thick Awaba Tuff in the Sydney Basin. Notably, much of the late Permian volcanic and plutonic magmatism in the SNEO is restricted to a remarkably small time range, which coincides exactly with the range of ash fall events in the Sydney and Gunnedah Basins, and possibly further afield. This suggests the SNEO, and the WVG in particular, was the dominant source of volcanic material erupted into these adjacent basins. Further, the adjacent basins may provide a more complete record of Permo-Triassic magmatism in the SNEO than currently preserved within the orogen itself.

  • This report presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb geochronological results obtained during the Geological Survey of Queensland-Geoscience Australia (GSQ-GA) Geochronology project between July 2010 and June 2012. A total of 24 samples were analysed, in support of ongoing regional geoscientific investigations and mapping programs by the GSQ. This report documents detailed results for each sample individually, encompassing sample location and geological context, a description of the target mineral for geochronology, the relevant analytical data, and a brief geochronological interpretation. A summary of all results from this study is presented in Table i, and the sample locations are shown in Figure i. The analysed samples are from regions extending from the Eulo Ridge, an exposed part of the mainly concealed Thomson Orogen in south-western Queensland, to the Charters Towers and Greenvale regions in the north and the Mount Isa region in the north-west (Figure i). The work was carried out to provide an improved time framework for updated interpretations of the geology of selected parts of the state.

  • This Record presents data collected as part of the ongoing NTGS-GA geochronology project between July 2014 and June 2015 under the National Collaborative Framework (NCF). In total, five new U-Pb SHRIMP zircon and titanite geochronological results derived from four samples from the Arunta Region in the Northern Territory are presented herein (Table 1; Figure 1). Three samples were collected from JERVOIS RANGE in HUCKITTA1 in the eastern Arunta Region, and comprise metasedimentary and metaigneous rocks. The fourth sample analysed is an igneous rock from drillcore in TOBERMOREY.

  • This Record documents the efforts of the Geological Survey of Victoria (GSV) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Victoria, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This dataset, which was primarily compiled by GSV and has been supplemented with data compiled by GA during the 2013–2017 Stavely Project, is a foundation for the second phase of the Exploring for the Future initiative over 2020–2024, particularly the Darling-Curnamona-Delamerian Project.

  • Herein we present the results of a national compilation of mineral deposits (available in Excel or CSV format) for Australia. The deposits were selected as they have substantial endowment (i.e. pre-mining mineral resource) and/or detailed geological information is available. For each deposit (or, in some cases, district) the dataset includes information on: 1. Name (including synonyms), location and GA identifying numbers; 2. Tectonic province that hosts the deposit; 3. Type(s) and age(s) of mineralising events that produced/affected the deposit (including metadata on ages); 4. The metal/mineral endowment of the deposit; 5. Host rocks to the deposit; 6. Spatially and/or temporally associated magmatic rocks; 7. Spatially and temporally associated alteration assemblages (mostly proximal, but, in some cases, regional assemblages); 8. The Fe-S-O minerals present in the deposit and relative abundances where known; 9. Sulfate minerals present; 10. Peak metamorphic grade; 11. Data sources; and 12. Comments. This document presents more detailed descriptions of the metadata presented in the compilation. The dataset is presented in Appendix A. Appendix B presents a national classification of geological provinces based mostly on existing State survey classifications; Appendix C presents a deposit classification based on the classification proposed by Hofstra et al. (2021); and Appendix D presents mineral abbreviations used in the dataset.

  • To test existing geological interpretations and the regional stratigraphic relationships of the Carrara Sub-basin with adjacent resource-rich provinces, the deep stratigraphic drill hole NDI Carrara 1 was located on the western flanks of the Carrara Sub-basin, on the seismic line 17GA-SN1. The recovery of high quality near-continuous core from the Carrara Sub-basin, in concert with the spectrum of baseline analytical work being conducted by Geoscience Australia through the EFTF program, as well as other work by government and university researchers is greatly improving our understanding of this new basin. While recently published geochemistry baseline datasets have provided valuable insight into the Carrara Sub-basin, the age of the sedimentary rocks intersected by NDI Carrara 1 and their chronostratigraphic relationships with adjacent resource rich regions has remained an outstanding question. In this contribution, we present new sensitive high-resolution ion microprobe (SHRIMP) geochronology results from NDI Carrara 1 and establish regional stratigraphic correlations to better understand the energy and base-metal resource potential of this exciting frontier basin in northern Australia.