elevation
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.
-
This web service provides access to geological, hydrogeological and hydrochemical digital datasets that have been published by Geoscience Australia for the Great Artesian Basin (GAB).
-
Water table elevation of the Great Artesian Basin. Data is available as contours (Shapefile) and elevation grids (ESRI grid and ESRI ASCII grid) Height is in metres above sea level (AHD). Cell resolution is 1000m. Contours and elevations were produced for the Great Artesian Basin Water Resource Assessment and used in watertable maps in: 1. Chapter 6 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 2. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 10 in the associated summary report. 3. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Central Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 13 in the associated summary report. 4. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 14 in the associated summary report. 5. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Western Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 12 in the associated summary report. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75830. METHODS (continued from Lineage field): Contours were hand drawn from point water level data. Groundwater water levels along rivers with high EVI values were assumed to be 10m below ground. This information was used to interpret groundwater level contours where borehole water level data was absent. In areas of sparse data coverage the 3 second DEM was used to constrain contours below ground level. SA water levels were corrected for density effects due to salinity (in excess of 100,000 mg/L TDS in some bores in the Eyre Basin) but all others were uncorrected because salinity data were not available. Density corrections for the watertable are not deemed to be an issue outside of the SA portion of the GAB. Remote sensing studies of Enhanced Vegetation Index (EVI) were also used in the interpretation to provide water level information along certain rivers (refer to data set "Watercourses used to calculate riparian evapotranspiration loss from the GAB") where there were no boreholes. The hand drawn transparencies interpreted by Jim Kellet were scanned into a 2bit tiff file format. Scanned images were then rectified within ArcGIS and vectorised into linework using the ArcScan toolset to produce the polygon dataset Linework and were attributed with a contour value within the field "height", as well as a DESCRIPTION of the line TYPE in the field "descript". The grid surface was created using the Topo to Raster tool in the Spatial Analyst toolset from the values within the "height" field and clipped to the Revised Great Artesian Basin boundary and GEODATA TOPO 250K coastline. Note: data used to compile this map was a combination of the most recent available water level measurements (as at 2011), water level measurements at the time of drilling or the first water cut reported in drillers logs.
-
This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.
-
This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.
-
This job is part of the town capture program
-
This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.
-
<p>Various gridded images were produced from the NTGS Tanami Region Airborne Magnetic and Radiometric Survey dataset and simultaneously merged into a single grid file. The final grid retains all of the information from the input data and is levelled to the national map compilations produced by Geoscience Australia. <p>The following merged grids are available in this download: <p>• Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. <p>• Total magnetic intensity grid (nT). <p>• Total magnetic intensity grid with variable reduction to the pole applied (nT). <p>• Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). <p>• NASVD-filtered potassium concentration grid (%). <p>• NASVD-filtered thorium concentration grid (ppm). <p>• NASVD-filtered uranium concentration grid (ppm).
-
This data set contains spatial data that represent the results of data worth analyses based on linear prediction uncertainty analysis and using the original GABtran groundwater flow model. Datasets with the suffix "increase" represent the data worth of observations calculated from their inclusion in a model calibration process. Datasets with the suffix "decrease" represent the data worth of observations calculated from their removal from a model calibration process. The remaining part of the filename indicates for which GABWRA reporting region the dataset relates. Projection information is in the file GABWRA.prj. Cell size is 5000m x 5000m 'No data' value is -9999 This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. The data is used in figures 5.10-5.16 of Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012) "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.
-
Layer 10 Base of Jurassic-Cretaceous sequence surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Jurassic-Cretaceous sequence The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface. This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76028. REFERENCES (Continued from Lineage field) 10. Passmore, V. L., T. U. Maung, et al. (1992). Gulf of Carpentaria petroleum prospectivity study. Record 1992/20. Australia, Bureau of Mineral Resources, Geology and Geophysics 11. Hawke, J. M. and J. N. Cramsie (1984). Contributions to the geology of the Great Australian Basin in New South Wales. Bulletin 31. Sydney. 12. Hinds, M. (2011). NSW Great Artesian Basin internal data set released to Geoscience Australia in 2011 by NSW Office of Water. Australia, New South Wales Office of Water. 13. Ransley and Smerdon (eds.) 2012. Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. CSIRO. Canberra. 14. Nelson GJ, Carey H, Radke BM and Ransley TR (2012). The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.