From 1 - 10 / 39
  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • This report presents the results of chemostratigraphic analyses for samples of the Waukarlycarly 1 deep stratigraphic well drilled in in the Waukarlycarly Embayment of the Canning Basin. The drilling of the well was funded by Geoscience Australia’s Exploring for the Future initiative to improve the understanding of the sub-surface geology of this underexplored region of the southern Canning Basin. The well was drilled in partnership with Geological Survey of Western Australia (GSWA) as project operator. Waukarlycarly 1 reached a total depth (TD) of 2680.53 m at the end of November 2019 and was continuously cored from 580 mRT to TD. The work presented in this report constitutes part of the post-well data acquisition. An elemental and isotope chemostratigraphic study was carried out on 100 samples of the well to enable stratigraphic correlations to be made across the Canning Basin within the Ordovician section known to host source rocks. Nine chemostratigraphically distinct sedimentary packages are identified in the Waukarlycarly 1 well and five major chemical boundaries that may relate to unconformities, hiatal surfaces or sediment provenance changes are identified. The Ordovician sections in Waukarlycarly 1 have different chemical signals in comparison to those in other regional wells, suggestive of a different provenance for the origin of the sediments in the Waukarlycarly Embayment compared to the Kidson Sub-basin (Nicolay 1) and Broome Platform (Olympic 1).

  • Soil geochemistry has been used to discover many mineral deposits in Australia. Further, it places first-order controls on soil fertility in agriculture and can be used to monitor the environment. With this utility in mind, an extensive soil sampling survey was undertaken as part of the Exploring for the Future program across the vast prospective exploration frontier between Tennant Creek and Mount Isa, dubbed the Northern Australia Geochemical Survey (NAGS). In all, 776 stream sediment outlet samples were collected at a depth of 0–10 cm, improving the density of the National Geochemical Survey of Australia by an order of magnitude, to one sample per ~500 km2. Two size fractions from each sample were analysed for a comprehensive suite of chemical elements after total digestion, Mobile Metal Ion™ (MMI) and aqua regia extractions, and fire assay. Here, we highlight the applicability of these results to base metal exploration, evaluation of soil fertility for agriculture and establishment of geochemical baselines. Our results reveal an association between elevated concentrations of commodity or pathfinder elements in the same or downstream catchments as known mineral deposits. Similar features elsewhere suggest new areas with potential for base metal discovery. <b>Citation:</b> Bastrakov, E.N. and Main, P.T., 2020. Northern Australia Geochemical Survey: a review of regional soil geochemical patterns. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Precambrian Pine Creek Orogen and Arnhem Province represent two of the oldest basement terrains in northern Australia and are often considered to be devoid of major tectonic or deformational activity since the cessation of regional metamorphism in the Paleoproterozoic. A major caveat in the current hypothesis of long lived structural inactivity is the absence of published low temperature thermochronological data and thermal history models for this area. Here we report the first apatite U–Pb, fission track and (U–Th–Sm)/He data for igneous samples from both the Pine Creek Orogen and Arnhem Province, complemented with apatite geochemistry data acquired by electron microprobe and laser ablation mass spectrometry methods, and present detailed multi-kinetic low temperature thermal history models. Low-temperature thermal history models for the Pine Creek Orogen and Arnhem Province reveal a distinct phase of denudation coeval with the Paleozoic Alice Springs Orogeny, suggesting that this orogenic event impacted a larger area of the Australian crust than previously perceived. Minor localised Mesozoic thermal perturbations proximal to the Pine Creek Shear-Zone record evidence for Mesozoic reactivation contemporaneous with modelled mantle driven subsidence and the onset of sedimentation in the Money Shoal Basin, while the Arnhem Province samples demonstrate no evidence of Mesozoic thermal perturbations. <b>Citation:</b> Angus L. Nixon, Stijn Glorie, Alan S. Collins, Jo A. Whelan, Barry L. Reno, Martin Danišík, Benjamin P. Wade, Geoff Fraser; Footprints of the Alice Springs Orogeny preserved in far northern Australia: an application of multi-kinetic thermochronology in the Pine Creek Orogen and Arnhem Province. <i>Journal of the Geological Society</i> 2020;; 178 (2): jgs2020–173. doi: https://doi.org/10.1144/jgs2020-173

  • The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Northern Australia. The Paleo- to Mesoproterozoic sedimentary and volcanic sequences of the Mount Isa–McArthur Basin region of Northern Territory and Queensland are host to a range of world class mineral deposits (Hutton et al., 2012) and include the basin-hosted base metal deposits of the North Australian Zinc Belt, the world’s richest belt of zinc deposits (Huston et al., 2006; Large et al., 2005). The region demonstrably has potential for additional world class mineral systems (Hutton et al. 2012), as well as potential to host shale gas plays (Gorton & Troup, 2018). An improved understanding of the chemistry of the host sedimentary units, including associated volcanic and intrusive rocks (potential metal source rocks) within these regions is therefore an important requisite to further understand the resource potential of the region. To assist in this we have undertaken a multi-year campaign (2016-2019) of regional geochemical sampling of geological units in the southeastern McArthur Basin, it’s continuation into the Tomkinson Province, and the Lawn Hill Platform regions of Northern Territory and northwest Queensland. Chief aims of the project were to characterise, as much as possible, the inorganic geochemistry of units of the Paleoproterozoic Tawallah, McArthur, Fickling and McNamara Groups and the Mesoproterozoic Roper and South Nicholson groups, with most emphasis on the Tawallah, McNamara and Fickling Groups. Minimal attention was paid to units of the McArthur Group which have been extensively previously sampled. The project also involved exploratory geochemical characterisation of sedimentary and igneous rocks from Paleoproterozoic and Mesoproterozoic rocks of the Tomkinson Province (Tomkinson, Namerinni and Renner groups) in Northern Territory. Minimal regional geochemical data exists for these rocks which are considered time equivalents of the Tawallah, McArthur, Nathan and Roper groups. The approach followed was based on targeting as many units as possible from drill core held within the core repository facilities of the Northern Territory and Queensland Geological surveys. Sampling strategy for individual units was based on targeting all lithological variability with particular emphasis on units not previously extensively sampled. Units were sampled at moderate to high resolution, with sampling density ranging from one sample per ~10 m intervals in organic rich intervals or lithological variable units, up to one sample per 20 to 50 m intervals in lithologically-monotonous units or in units recently sampled recently by GA or others. This data release contains the results of elemental analyses (XRF, ICP-MS), ferrous iron oxide content (FeO) and Loss-on-ignition (LOI) on 805 samples selected from 42 drill cores housed in the Geological Survey of Northern Territory’s Darwin and Alice Springs core repositories and in the Geological Survey of Queensland’s Brisbane and Mount Isa core repositories. Drillholes sampled include the Amoco holes DDH 83-1, DDH 83-2, DDH 83-3, DDH 83-4, and DDH 83-5, as well as 14MCDDH001, 14MCDDH002, 87CIIDH1, 87CIIDH2, Bradley 1, Broughton 1, DD81CY1, DD91RC18, DD91DC1, DD91HC1, DD95GC001, GCD-1, GCD-2A, GSQ Lawn Hill 3, GSQ Lawn Hill 4, GSQ Westmoreland 2, MWSD05, ND1, ND2, 12BC001, and Willieray (1DD, 3DD, 8DD), Hunter (1DD, 2DD, 3DD) and HSD001, HSD002 holes from the Tomkinson Province. The data also include a small number of non-basin samples (from drill holes AAI POTALLAH CREEK 1, ADRIA DOWNS 1, Bradley 1, GSQ Normanton 1, GSQ Rutland Plains 1, MULDDH001 and MURD013), collected at the same time, largely for isotopic studies. The resultant geochemical data was largely generated at the Inorganic Geochemistry Laboratory at Geoscience Australia (509 of the 805 analyses), with two batches (296 samples) analysed by Bureau Veritas in Perth. Eighteen samples analysed at GA were also reanalysed at Bureau Veritas for QA/QC purposes. All data was collected as part of the Exploring for the Future program. The report also includes a statistical treatment of the geochemical data looking at laboratory performance, based on certified reference material (CRMs) and sample duplicates, and interlaboratory agreement, based on samples analysed at both laboratories. Results show accuracies were within acceptable tolerances (±2 SD) for the majority of major and trace elements analysed at both laboratories. Notable exceptions included significant negative bias for Fe2O3 and positive bias for Na2O at Geoscience Australia. The results also showed that Mo (and As and Be) measurements were a consistent problem at GA, and Zn a consistent problem at BV. Precision (reproducibility) for major elements at both laboratories was very good, generally between 1 to 5%. Precisions for trace elements, varied from generally 5% or better at Geoscience Australia, and mostly between 5 and 10% for Bureau Veritas. Importantly, agreement between laboratories was good, with the majority of elements falling within ±5% agreement, and a few within 5-10% (Th, Tb, Sr, Zn, Ta, and Cr). Major exceptions to this included Na2O, K2O, Rb, Ba and Cs, as well as P2O5 and SO3, as well as those trace elements commonly present in low concentrations (e.g., Cu, As, Be, Mo, Sb, Ge, Bi). The mismatch between the alkalis is notable and of concern, with differences (based on median values) of 17% and 22% for K2O and Ba (higher at Bureau Veritas) and 32% and 300% for Ba and Na2O (higher at Geoscience Australia). The geochemical data presented here have formed the basis for ongoing studies into aspects of basin-hosted mineral systems in the McArthur–Mount Isa region, including insights into sources of metals for such deposits and delineating alteration haloes around those deposits (Champion et al., 2020a, b).

  • A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in a partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the southwest Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the driller’s total depth (TD) of 2680.53 mRT. An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. This data release presents organic geochemical analyses undertaken on rock extracts obtained from cores selected from the Barnicarndy 1 well. The molecular and stable isotope data carbon and hydrogen will be used to understand the type of organic matter being preserved, the depositional facies and thermal maturity of the Lower Ordovician sedimentary rocks penetrated in this well. This information provides complementary information to other datasets including organic petrological and palynological studies.

  • As part of the Onshore Energy Systems Group’s program, late gas (methane) and compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the data required to access the shale gas potential of source rocks from the Georgina Basin, Australia.

  • Well and seismic correlation schemes exist for the Western Australian and South Australian parts of the Officer Basin but there are inconsistencies between the western and eastern regions. Hence, as part of the Exploring for the Future Officer-Musgrave Project, a chemostratigraphic correlation has been determined for the sedimentary fill of the Officer Basin with emphasis on Neoproterozoic to Cambrian rocks. The correlations have been developed on whole rock inorganic geochemical data obtained from the analysis of 10 study wells which span the basin from Western Australia and into South Australia. A total of 8 chemostratigraphic mega-sequences (MS) are recognised across the basin, that in turn are subdivided into a total of 24 chemostratigraphic sequences. MS1 to MS6 include the Neoproterozoic to Cambrian sedimentary rocks and are the focus of this study. The Neoproterozoic–Cambrian mega-sequences MS1 to MS4 broadly correspond to the previously defined Centralian supersequences CS1 to CS4 and provide robust well-control to the regional seismic correlations. Confidence in the correlation of these old rocks are important since they contain both potential source and reservoir rocks for petroleum generation and accumulation. MS7 is equivalent to the Permian Paterson Formation, while MS8 is equivalent to the Mesozoic section. The elemental data has also been used to elucidate aspects of the petroleum system by characterising reservoirs and identifying fine-grained siliciclastics deposited in anoxic environments which may have source potential. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation:</b> Edwards D.S., Munday S., Wang L., Riley D. & Khider K., 2022. Neoproterozoic and Cambrian chemostratigraphic mega-sequences of the Officer Basin; a regional framework to assist petroleum and mineral exploration. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146285

  • Geochemical surveys conducted by BMR since 1980 in the southern Kakadu region have highlighted the natural occurrence in specific areas of well above crustal concentrations of uranium, thorium, arsenic, mercury and lead. The natural levels of concentration in the land and possibly the water systems of the South Alligator Valley area could constitute an environmental hazard. A large part of this area coincides with the area delineated as the "sickness country". SUBMISSION TO THE RESOURCE ASSESSMENT COMMISSION BY THE BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS.