Exploration Geochemistry
Type of resources
Keywords
Publication year
Topics
-
A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in a partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the southwest Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the driller’s total depth (TD) of 2680.53 mRT. An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. This data release presents organic geochemical analyses undertaken on rock extracts obtained from cores selected from the Barnicarndy 1 well. The molecular and stable isotope data carbon and hydrogen will be used to understand the type of organic matter being preserved, the depositional facies and thermal maturity of the Lower Ordovician sedimentary rocks penetrated in this well. This information provides complementary information to other datasets including organic petrological and palynological studies.
-
<div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates. </div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report. </div><div><br></div>
-
<div>A powerpoint presentation given by Ivan Schroder at Uncover Curnamona 2022. The presentation covers the activities and upcoming products of the Curnamona Geochemistry module (within the Darling Curnamona Delamerian Project of the Exploring for the Future Program)</div>
-
The National Geochemical Survey of Australia (NGSA) is Australia’s first national-scale geochemical survey. It was delivered to the public on 30 June 2011, after almost five years of stakeholder engagement, strategic planning, sample collection, preparation and analysis, quality assurance/quality control, and preliminary data analytics. The project was comprehensively documented in seven initial open-file reports and six data and map sets, followed over the next decade by more than 70 well-cited scientific publications. This review compiles the body of work and knowledge that emanated from the project to-date as an indication of the impact the NGSA had over the decade 2011-2021. The geochemical fabric of Australia as never seen before has been revealed by the NGSA. This has spurred further research and stimulated the mineral exploration industry. This paper also critically looks at operational decisions taken at project time (2007-2011) that were good and perhaps – with the benefit of hindsight – not so good, with the intention of providing experiential advice for any future large-scale geochemical survey of Australia or elsewhere. Strengths of the NGSA included stakeholder engagement, holistic approach to a national survey, involvement of other geoscience agencies, collaboration on quality assurance with international partners, and targeted promotion of results. Weaknesses included gaining successful access to all parts of the nation, and management of sample processing in laboratories. <b>Citation:</b> Patrice de Caritat; The National Geochemical Survey of Australia: review and impact. <i>Geochemistry: Exploration, Environment, Analysis </i>2022;; 22 (4): geochem2022–032. doi: https://doi.org/10.1144/geochem2022-032 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)
-
<div>Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Stansbury Basin is a relatively underexplored basin in southern South Australia. Stansbury West 1 was drilled on the east coast of Yorke Peninsula to test the basal Permian sands and Paleozoic carbonate known to contain traces of hydrocarbon gas and residual oil. The well encountered no significant hydrocarbons and was abandoned as dry. A known occurrence of hydrogen-rich natural gas was discovered nearly a century ago in a well to the north of Stansbury West 1. Also potential hydrogen gas enrichment in the near-surface in the surrounds of the Stansbury West 1 drillhole has been proposed using satellite imagery and land surface features.</div><div><br></div><div>The study of natural hydrogen gas occurrences is a focus for the second phase of the EFTF program (2020–2024) and the fluid inclusion stratigraphy (FIS) technique of Fluid Inclusion Technology (Schlumberger) provides a convenient method to measure the well's complete downhole section for both hydrocarbon non-hydrocarbon gases that have been geologically trapped in fluid inclusions and then mechanically released in the laboratory.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the drillhole Stansbury West 1, Stansbury Basin. FIS analysis was performed on 270 cuttings and core samples from 15.24 to 1743.53 metres, including 4.9 metres of Archean gneiss and granitic basement at the base of the drillhole.</div><div><br></div><div>This ecat record releases the final report containing the results of fluid inclusion stratigraphy and thin section analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger (Company reference number FI220025a).</div>
-
<div>Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments, and aimed at stimulating exploration now to ensure a sustainable, long-term future for Australia through an improved understanding of the nation’s minerals, energy and groundwater resource potential. </div><div>The EFTF program is currently focused on eight interrelated projects, united in growing our understanding of subsurface geology. One of these projects, the Barkly–Isa–Georgetown project, will deliver new data and knowledge to assess the mineral and energy potential in undercover regions between Tennant Creek, Mount Isa and Georgetown. Building on the work completed in the first four years of the Exploring for the Future program (2016-2020), the project undertook stratigraphic drilling in the East Tennant and South Nicholson regions, in collaboration with MinEx CRC and the Northern Territory Geological Survey (NTGS). This work tests geological interpretations and the inferred mineral and energy potential of these covered regions. Geoscience Australia is undertaking a range of analyses on physical samples from these drill holes including geochemistry and geochronology. </div><div>The South Nicholson National Drilling Initiative (NDI) Carrara 1 drill hole is the first drillhole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys acquired as part of the EFTF. It is located on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line 17GA-SN1, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div>The NDI BK10 drill hole is the tenth drill hole drilled as part of the East Tennant project aimed to constrain the East Tennant basement geology and calibrate predictive mineral potential maps to further our understanding of the prospectivity of this region. NDI BK10 reached a depth of 766 m and intersected basement at 734 m. Overlying these basement metasediments of the Alroy Formation, the drillhole intersected about 440 m of Proterozoic rocks underlain by ca. 300 m rocks of Cambrian age from the Georgina Basin.</div><div>During coring of NDI Carrara 1 and NDI BK10, cores containing oil stains were identified and sent for geochemical analysis to Geoscience Australia. This report presents the geochemical data from these oil stains including biomarker and isotopic data.</div>
-
A comprehensive geochemical program was carried out on rock samples collected in the NDI Carrara 1 drill hole, the first stratigraphic test of the newly discovered Carrara Sub-basin located in the South Nicholson region of northern Australia. The drill hole recovered continuous core from 284 m to total depth at 1750 m and intersected approximately 1120 m of Proterozoic sedimentary rocks, unconformably overlain by 630 m of Cambrian Georgina Basin carbonate-rich rocks. Total organic carbon (TOC) contents from Rock-Eval pyrolysis highlight the potential for several thick black shales to be a source of petroleum for conventional and unconventional plays. Cambrian rocks contain an organic-rich section with TOC contents of up to 4.7 wt.% and excellent oil-generating potential. The Proterozoic section is overmature for oil generation but mature for gas generation, with potential for generating gas in carbonaceous mudstones showing TOC contents up to 5.5 wt.% between 680 and 725 m depth. A sustained release of methane (up to 2%) recorded during drilling from 1150 to 1500 m suggests potential for an unconventional gas system in the Proterozoic rocks from 950 to 1415 m depth, which exhibit favourable organic richness and thermal maturity. The Proterozoic rocks, which are comparable in age to the sediment-hosted deposits of the Century Mine, contain local occurrences of lead, zinc and copper sulfide minerals providing hints of mineralisation. The combined geochemical results offer the promise of a potential new resource province in northern Australia. <b>Citation:</b> E. Grosjean, A.J.M. Jarrett, C.J. Boreham, L. Wang, L. Johnson, J.M. Hope, P. Ranasinghe, J.J. Brocks, A.H.E. Bailey, G.A. Butcher, C.J. Carson, Resource potential of the Proterozoic–Paleozoic Carrara depocentre, South Nicholson region, Australia: Insights from stratigraphic drilling, <i>Organic Geochemistry</i>, Volume 186, 2023, 104688, ISSN 0146-6380, DOI: https://doi.org/10.1016/j.orggeochem.2023.104688.
-
Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).
-
The Neoproterozoic to Middle Ordovician sediments of the Officer Basin, Australia are difficult to correlate, in part because biostratigraphic studies of acritarchs and stromatolites are localised, isotopic studies are rare, and seismic models are technically challenged by the occurrence of basaltic and halite prone-sections. Hence, the chemostratigraphic framework presented here provides an independent stratigraphic model for the Neoproterozoic to Middle Ordovician sediments of the Officer Basin. A total of six chemostratigraphic mega-sequences have been geochemically defined and assigned to the stratigraphy; these have been further subdivided into twenty-eight chemostratigraphic sequences. The chemostratigraphic zonation has been established upon elemental changes attributed to provenance and climatic variation which can be used for correlation as they convey regional, rather than local, changes in sedimentation. The elemental data reveals that there is lateral variation within the established lithostratigraphy (e.g., within the members of the Observatory Hill and Hussar formations), which is suggestive of localised sediment source input to different areas of the basin. Presented to the 2022 Central Australian Basins Symposium IV (CABS) 29-30 August (https://agentur.eventsair.com/cabsiv/)
-
The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Studies section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and facilitate exploration investment in Australia. The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018), Dorado 1 (2018), Dorado 2 (2019) and Dorado 3 (2019) wells in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata (Thompson, 2020; Thompson et al., 2015 and 2018). The current study aims to better understand this new petroleum system and establish its extent. As part of this program, a range of organic geochemical analyses were acquired on petroleum fluids from the Roc 1 and Roc 2 wells with these data released in this report.