From 1 - 10 / 35
  • Tropical Cyclone (TC) Yasi crossed Queensland's Cassowary Coast during the night of the 2nd and 3rd of February, 2011. The cyclone was forecast by BoM (2011) to be a severe storm with wind gusts forecast to exceed the design gust wind speeds for houses set out in AS4055. Following the passage of the cyclone, it was evident that the severe wind and large coastal storm surge had caused significant damage to the region's building stock. Geoscience Australia (GA), together with collaborators from the National Institute of Water and Atmospheric Research, New Zealand (NIWA), Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and Maddocks & Associates, undertook a survey of damage to the region's buildings caused by severe wind and storm surge.

  • The datasets created to produce the emergency mapping support products which contributed to fulfilling GA's arrangements in supporting the outcomes sought by the Australian Government during disaster events.

  • The Australian Flood Risk Information Portal (the portal) is an initiative of the Australian Government, established following the devastating floods across Eastern Australia in 2011. The portal is a key component of the National Flood Risk Information Project (NFRIP), and aims to provide a single point of access to Australian flood information. Currently much of Australia's existing flood information is dispersed across disparate sources, making it difficult to find and access. The portal will host data and tools that allow public discovery, visualisation and retrieval of flood studies, flood maps, satellite derived water observations and other related information, all from a single location. The portal will host standards and guidelines for use by jurisdictions and information custodians to encourage best practice in the development of new flood risk information. While the portal will initially host existing flood information, the architecture has been designed to allow the portal content to grow over time to meet the needs of users. The aim is for the portal to display data for a range of scenarios from small to extreme events, though this will be dependent on stakeholder contributions. Geoscience Australia's Australian Flood Studies Database is the portal's data store of flood study information. The database includes metadata created through a purpose-built data entry application, and over time, information harvested from state-operated catalogues. For each entry the portal provides a summary of the flood study, including information on how the study was done, what data was used, what flood maps were produced and for what scenarios, as well as details on the custodian and originating author. If the study included an assessment of damage, details such as estimates of annual average damage, or the number of properties affected during a flood of a particular likelihood will also be included. During the last phase of development downloadable flood study reports and their associated flood maps have been added to the portal where available. As the portal is populated it will increasingly host mapped flood data, or link to flood data and maps held in authoritative databases hosted by State and Territory bodies. Mapping data to be made accessible through the portal will include flood extents and to a lesser degree information on water depths. The portal will also include water observations obtained from Geoscience Australia's historic archive of Landsat imagery. This data will show whether a particular location was 'wet' at some point during the past 30 years. While this imagery does not necessarily represent the peak of a flood or show water depth, the data will support the validation and verification process of hydrologic and hydraulic flood modelling. This work will prove useful particularly in rural areas where there is little or no flood information. The portal also provides flood information custodians with the ability to either upload mapped data directly to the portal or to make this data accessible via web services. Data management tools and standards, developed through NFRIP, will enable data custodians to map their data to agreed standards for delivery through the portal. A portal framework and supporting principles has been developed to guide the maintenance and development of the portal.

  • Geoscience Australia is currently drafting a new National Earthquake Hazard Map of Australia using modern methods and models. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this paper we provide a brief history of national earthquake hazard maps in Australia, with a focus on the map used in AS1170.4, and provide an overview of the proposed changes for the new map. The revision takes advantage of the significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the original maps were produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability The following papers in this session will address in more detail the changes to the earthquake catalogue, earthquake recurrence and ground motion prediction equations proposed for use in the draft map. The draft hazard maps themselves are presented in the final paper.

  • This paper presents a model to assess bushfire hazard in south-eastern Australia. The model utilises climate model simulations instead of observational data. Bushfire hazard is assessed by calculating return periods of the McArthur Forest Fires Danger Index (FFDI). The return periods of the FFDI are calculated by fitting an extreme value distribution to the tail of the FFDI data. The results have been compared against a spatial distribution of bushfire hazard obtained by interpolation of FFDI calculated at a number of recording stations in Australia. The results show that climate simulations produce a similar pattern of bushfire hazard than the interpolated observations but the simulated values tend to be up to 60% lower than the observations. This study shows that the major source of error in the simulations is the values of wind speed. Observational wind speed is recorded at a point-based station whilst climate simulated wind speed is averaged over a grid cell. On the other hand FFDI calculation is very sensitive to wind speed and hence to improve the calculation of FFDI using climate simulations it is necessary to correct the bias observed in the simulations. A statistically-based procedure to correct the simulation bias has been developed in this project. Bias-corrected calculation of FFDI shows that the major bushfire hazard in south-eastern Australia is in the western parts of SA and NSW; and in south-western Tasmania.

  • This document is intended to provide a record of the participants, program, and discussions held at the Fire Weather and Risk Workshop, held at Peppers Craigieburn in Bowral, from 1st -4th September 2011. The workshop was attended by 77 delegates and was sponsored by the ACT Emergency Services Agency, Geoscience Australia, the Bureau of Meteorology, and the Federal Attorney Generals Department. These proceedings include the: - workshop program - executive summary by the workshop organizers - presentation abstracts (optional) - summaries of presentations and discussions (compiled at the workshop by the session chairs and scribes) - survey of participants- expectations of the workshop (received prior to the workshop) - results of a post-workshop evaluation - list of participants. This document also includes an invited journalistic-styled article by science journalist, Nick Goldie (Senior Deputy Captain, Colinton Rural Fire Brigade, NSW RFS) which provided an independent view on the activities that occurred over the three days.

  • Geoscience Australia is currently drafting a new National Earthquake Hazard Map of Australia using modern methods and models. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this paper we provide a brief history of national earthquake hazard maps in Australia, with a focus on the map used in AS1170.4, and provide an overview of the proposed changes for the new map. The revision takes advantage of the significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the original maps were produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability The following papers in this session will address in more detail the changes to the earthquake catalogue, earthquake recurrence and ground motion prediction equations proposed for use in the draft map. The draft hazard maps themselves are presented in the final paper.

  • A community Safety Capbility Flyer was produced to showcase the work undertaken in the Community Safety Value Stream. The flyer includes an introduction to the Community Safety Value Stream, case studies of the work Geoscience Australia does in this space and information on how to engage with Geoscience Australia via the products, tools, models and applications that are produced. This flyer is intended for use a conferences and where promotional material would beneficial to showcase the work undertaken at Geoscience Australia such as the Floodplain Management Association Conference on 19-22 May 2015.

  • Developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research considers three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region.

  • Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devestating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.