From 1 - 10 / 393
  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows uranium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • The Otway Basin is a northwest-southeast trending rift basin which spans from onshore Victoria and South Australia into the deep-water offshore. The prospective supersequences within the basin are largely of Cretaceous age which host three possible petroleum systems (Austral 1, 2 and 3). While there is production from onshore depocentres, and the inboard Shipwreck Trough, the majority of the offshore basin remains underexplored. Recent regional studies have highlighted the need for further work across the underexplored parts of the basin and here we focus on the offshore northwest Otway Basin, integrating reinterpreted historical well data, newly acquired and recently reprocessed seismic data. This new Well Folio consists of composite logs and supporting data which includes interpreted lithologies, petrophysical analyses, the analysis of historic organic geochemistry and organic petrology. In addition, updated well markers are provided based on seismic interpretation and new biostratigraphy in key wells. This integrated study provides the basis for renewed prospectivity assessment in the northwest offshore portion of the Otway Basin.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows uranium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Cobar P5009 EXT 5 total magnetic intensity grid has a cell size of 0.00039074 degrees (approximately 40m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Cobar P5009 EXT 5 reduced to pole fft 1st vertical derivative grid is the first vertical derivative of the TMI RTP grid of the Cobar Magnetic and Radiometric Survey, 2021 survey. This grid has a cell size of 0.00039074 degrees (approximately 40m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Cobar Magnetic and Radiometric Survey, 2021 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00039074 degrees (approximately 40m) and shows thorium element concentration of the Cobar Magnetic and Radiometric Survey, 2021 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.00039074 degrees (approximately 40m).The data are in nanoTesla (or nT). The data used to produce this grid was acquired in 2021 by the NSW Government, and consisted of 53617 line-kilometres of data at 200m line spacing and 60m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey.

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2022 acreage release consists of 10 areas offshore of the Northern Territory, Western Australia, Victoria, and the Ashmore and Cartier Islands.

  • Geoscience Australia’s biostratigraphic database (STRADAT) provides information about the biozonation of sedimentary rocks that were intersected by offshore petroleum wells. The basic unit of biostratigraphy is the biozone, a geological unit formally defined on the basis of the fossil groups contained within. Widely used taxa include trilobites, brachiopods, conodonts, dinoflagellate cysts, foraminifera, graptolites, spores and pollen, as well as nanofossils. Such units are typically defined by either the first appearance (range base) and apparent extinctions (range top/last appearance), or abundance of fossil index species. These fossil indices should ideally be relatively abundant, short-lived taxa that are easy to recognise and as geographically widespread as possible. Zonal schemes based on several different fossil groups can be used in parallel, and the zones can be calibrated to the absolute geological timescale (i.e., Geologic Time Scale 2004, 2012, 2020). Biozones allow the identification of spacial—temporal relationships and the distribution of lithostratigraphic units within and across sedimentary basins. They facilitate the understanding of subsurface geology and identification of source, reservoir and seal rocks, key elements of petroleum systems. These biostratigraphic data originate from well completion reports and destructive analyses reports that are submitted by the petroleum industry under the Offshore Petroleum and Greenhouse Gas Storage Act (OPGGSA) 2006 and previous Petroleum (submerged Lands) Act (PSLA) 1967. These data are also sourced from biostratigraphic studies by Geoscience Australia and its predecessor organisations, the Australian Geological Survey Organisation (AGSO) and the Bureau of Mineral Resources (BMR), as well as from state and territory geological organisations. Other open file data from publications, including university theses, are also captured. The database structure has evolved over time and will keep changing as different types of geological timescales data become available and the delivery platform changes. Data was initially delivered through the Petroleum Wells web page, http://dbforms.ga.gov.au/www/npm.well.search, which is in the process of being decommissioned. The biostratigraphic data will be available for viewing and download via the Geoscience Australia Portal Core, https://portal.ga.gov.au/.

  • The AusSeabed Marine Data Portal provides openly accessible seabed data to users. This report details the results and recommendations following a community survey on the portals functionality and usability. The report informs future development of the AusSeabed Marine Data Portal to ensure it meets end-user needs.