From 1 - 10 / 28
  • A 3D map of the Cooper Basin region has been produced over an area of 300 x 450 km to a depth of 20 km. The 3D map was constructed from 3D inversions of gravity data using geological data to constrain the inversions. It delineates regions of low density within the basement of the Cooper/Eromanga Basins that are inferred to be granitic bodies. This interpretation is supported by a spatial correlation between the modelled bodies and known granite occurrences. The 3D map, which also delineates the 3D geometries of the Cooper and Eromanga Basins, therefore incorporates both potential heat sources and thermally insulating cover, key elements in locating a geothermal play. This study was conducted as part of Geoscience Australia's Onshore Energy Security Program, Geothermal Energy Project.

  • The Galilee Basin Hydrogeological Model is a numerical groundwater flow model of the Galilee subregion in Queensland, an area of approximately 300,000 square kilometres. The model encompasses the entire geological Galilee Basin as well as parts of the overlying Eromanga Basin and surficial Cenozoic sediments. The model includes aquifers that form part of the Great Artesian Basin (specifically those aquifers in the Eromanga Basin), a hydrogeological system of national significance (see Evans et al 2018). The development of the Galilee Basin Hydrogeological Model represented an ambitious, first-pass attempt to better understand potential regional-scale cumulative groundwater impacts of seven proposed coal mines in the Galilee Basin (as known circa 2014, see Lewis et al. 2014 for details). This work was commissioned as part of the bioregional assessment for the Galilee subregion (https://www.bioregionalassessments.gov.au/assessments/galilee-subregion). Geoscience Australia has made the flow model and associated datasets available to support further academic or research investigations within the region. Importantly though, due to a number of limitations and assumptions (outlined in the final model report, Turvey et al., 2015), the model is not suitable for decision-making in relation to water resource planning or management. Further, the model was not developed to predict potential groundwater impacts of any individual mining operations, but provides a regional cumulative development perspective. The groundwater model and associated report were produced by HydroSimulations under short-term contract to Geoscience Australia in 2015. The report is referenced in several products released as part of the bioregional assessment (BA) for the Galilee subregion. However, due to the size, complexity and limitations of this model, this model was not used as the primary groundwater modelling input for the Galilee BA. Further detail about the key modelling limitations and why it was unsuitable for use in the Galilee BA are outlined in the BA Groundwater modelling report (Peeters et al., 2018). References Evans T, Kellett J, Ransley T, Harris-Pascal C, Radke B, Cassel R, Karim F, Hostetler S, Galinec V, Dehelean A, Caruana L and Kilgour P (2018) Observations analysis, statistical analysis and interpolation for the Galilee subregion. Product 2.1-2.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.1-2.2. Lewis S, Cassel R and Galinec V (2014) Coal and coal seam gas resource assessment for the Galilee subregion. Product 1.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. https://www.bioregionalassessments.gov.au/assessments/12-resource-assessment-galilee-subregion. Peeters L, Ransley T, Turnadge C, Kellett J, Harris-Pascal C, Kilgour P and Evans T (2018) Groundwater numerical modelling for the Galilee subregion. Product 2.6.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.6.2. Turvey C, Skorulis A, Minchin W, Merrick NP and Merrick DP (2015) Galilee Basin hydrogeological model Milestone 3 report for Geoscience Australia. Prepared by Heritage Computing Pty Ltd trading as Hydrosimulations. Document dated 16 November 2015. http://www.bioregionalassessments.gov.au/sites/default/files/galilee-basin-hydrological-model-pdf.pdf. <b>The model is available on request from clientservices@ga.gov.au - Quote eCat# 146155</b>

  • X3D Model and Visualisation of the Hydrostratigraphic System in the Hodgson and Kings Creek Sub-Catchments

  • The project modelled the tsunami inundation to selected sites in South East Tasmania based on a Mw 8.7 earthquake on the Puysegur Trench occurring at Mean Sea Level. As yet, there is no knowledge of the return period for this event. The project was done in collaboration with Tasmania State Emergency Services as part of a broader project that investigated tsunami history through palaeotsunami investigations. The intent was to build the capability of staff within Tasmania Government to undertake the modelling themselves. Formal modelling of the tsunami inundation occurred through national project funding.

  • <div>This model is a volumetric representation of receiver function analysis based on common conversion point (CCP) profiles created every 50 km in North-South and East-West directions below the AusArray network (Gorbatov et al., 2020), combining them into one 3D image. The model bounds are: (-21.74, 132.52) - (-17.30, 141.46), geographic projection EPSG:28353. The model file is distributed in ASCII GoCad stratigraphic grid format (SGrid) where units are longitude (meters), latitude (meters), depth (meters) and value of receiver function amplitude.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • The aim of this document is to * outline the information management process for inundation modelling projects using ANUGA * outline the general process adopted by Geoscience Australia in modelling inundation using ANUGA * allow a future user to understand (a) how the input and output data has been stored (b) how the input data has been checked and/or manipulated before use (c) how the model has been checked for appropriateness

  • 40 years atmospheric reanalysis for Australia region. http://www.ecmwf.int/products/data/archive/descriptions/e4/index.html

  • <p>The footprint of a mineral system is potentially detectable at a variety of scales, from the ore deposit to the Earth’s crust and lithosphere. In order to map these systems, Geoscience Australia has undertaken a series of integrated studies to identify key regions of mineral potential using new data from the Exploring for the Future program together with legacy datasets. <p>The recently acquired long-period magnetotellurics (MT) data under the national-scale AusLAMP project mapped a lithospheric scale electrical conductivity anomaly to the east of Tennant Creek. This deep anomaly may represent a potential source region for mineral systems in the crust. In order to refine the geometry of this anomaly, high-resolution broadband and audio MT data were acquired at 131 stations in the East Tennant region and were released in Dec 2019 (http://dx.doi.org/10.26186/5df80d8615367). We have used these high-resolution MT data to produce a new 3D conductivity model to investigate crustal architecture and to link to mineral potential. The model revealed two prominent conductors in the resistive host, whose combined responses link to the deeper lithospheric-scale conductivity anomaly mapped in the broader AusLAMP model. The resistivity contrasts coincide with the major faults that have been interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to near-surface, strongly suggesting that the major faults are deep penetrating structures that potentially act as pathways for transporting metalliferous fluids to the upper crust where they can form mineral deposits. Given the geological setting, these results suggest that the mineral prospectivity for iron oxide copper-gold deposits is enhanced in the vicinity of the major faults in the region. <p>This release package includes the 3D conductivity model produced using ModEM code in sGrid format and Geo-referenced depth slices in .tif format.

  • It is with great interest that we read the paper by Mueller (2015) who proposes that the majority of small pockmarks with diameters less than about 10 m on the northwest shelf of Australia may be of biotic origin, created by the fish Epinephelus, the Grouper. This hypothesis is based on a spatial association between pockmarks and Epinephelus at a number of sites on the northwest shelf and elsewhere around Australia, and on recent work undertaken on the habitats and observed behaviours of grouper fish in the Gulf of Mexico who excavate sediment from pre-existing solution cavities (Coleman et al., 2010; Wall et al., 2011). However, we contend that critical details have not been taken into account as part of Mueller's (2015) hypothesis, and additional consideration of existing geologic, geomorphic, sedimentologic and geochemical information is required. To make the science more robust, here we present a more comprehensive overview of the information available.

  • The aim of this document is to: * outline the general process adopted by Geoscience Australia in modelling tsunami inundation for a range of projects conducted in collaboration with Australian and State Government emergency management agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities.