From 1 - 10 / 331
  • On 23 March 2012 a MW 5.4 intraplate earthquake occurred in the eastern Musgrave Ranges of north-central South Australia, near the community of Ernabella (Pukatja). This was the largest earthquake recorded on mainland Australia in the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone that included reverse fault scarps with a maximum vertical displacement of ~0.5 m (average ~0.1 m), extensive ground cracking, and numerous rock falls. Fifteen months later, on 09 June 2013 a MW 5.6 earthquake (the Mulga Park earthquake) occurred ~15-20 km northwest of the 2012 rupture. The P-axes of the focal mechanisms constructed for both events indicate northeast-oriented horizontal compressive stress. However, the focal mechanism for the Mulga Park earthquake suggests strike-slip failure, with a sub-vertical northerly-trending nodal plane favoured as the failure plane, in contrast to the thrust mechanism for the 2012 event. Despite being felt more widely than the 2012 event, ground cracking and minor dune settlement were the only surface expressions relating to the Mulga Park earthquake. No vertical displacements were evident, nor were patterns indicative of a significant lateral displacement. An 18 km long north to north east trending arcuate band of moderate to high cracking density was mapped parallel to the surface trace of the Woodroffe Thrust, a major crust-penetrating fault system. A lobe of high-density cracking ~5km long, coincident with the calculated epicentral location, extended to the north from the centre of the main arc. We speculate that the rupture progressed to the south beneath the northern high-density lobe (consistent with the dimensions expected from new scaling relations), and that the larger arcuate band of cracking might relate to positive interference resulting from reflection of energy from the Woodroffe Thrust interface. Both events provide new insight into the rupture behaviour of faults in non-extended cratonic crust.

  • We have developed models for the prediction of bedrock ground motion response spectra in several regions of Australia. In Eastern Australia, we developed models for the Paleozoic Lachlan Fold Belt, and the Sydney Basin that lies within it, and in Western Australia we developed models for the Yilgarn Craton and the adjacent Perth Basin. The models are based on the broadband simulation of accelerograms using regional crustal velocity models and earthquake source scaling relations. For both the Lachlan Fold Belt and Yilgarn regions, we used comparison of synthetic seismograms with the recorded seismograms of small earthquakes to test and modify regional crustal velocity models. In Western Australia, we used the rupture models of the 1968 Mw 6.6 Meckering earthquake and the 1988 Mw 6.25, 6.4 and 6.5 Tennant Creek earthquakes to constrain the scaling relationship between seismic moment and rupture area. Other aspects of the source scaling relations were derived from our scaling relations for earthquakes in eastern North America (Somerville et al., 2001). In eastern Australia, the data available for historical earthquakes are insufficient to constrain earthquake scaling relations, so we have used the relations for Western Australia as well as the relations for the western United States (Somerville et al., 1999). We generated suites of broadband ground motion time histories using these source scaling relations and crustal structure models. These ground motion simulations were used to generate ground motion prediction models for each region. The ground motion models have been compared with the model of Liang et al. (2008) for Western Australia, with models for Eastern North America including Atkinson and Boore (2006), Somerville et al (2001), and Toro et al (1997), and with the NGA models.

  • This isoseismal data shows the distribution of the shaking effects of earthquakes that were felt in Australia between 1841 and 2003. The data was captured from maps collated in the Geoscience Australia record "Atlas of Isoseismal Maps of Australian Earthquakes" compiled by K.F. McCue and supplimented with data from recent Centre for Earthquake Research Australia (CERA) reports and other unpublished data. Data present include felt values (points) and isoseismal contours (lines) from 405 earthquake events in an attributed GIS Dataset.

  • The seismicity of the Australian continent is low to moderate by world standards. However, the seismic risk is much higher for some types of Australian infrastructure due to an incompatibility of structural vulnerability with local earthquake hazard. The earthquake risk in many regional neighbours is even higher due to high hazard, community exposure and vulnerability. The Risk and Impact Analysis Group is a multidisciplinary team at Geoscience Australia that is actively engaged in research to better understand earthquake risk in Australia and to assist agencies in neighbouring countries develop similar knowledge. In this presentation aspects of this work will be described with a particular focus on engineering vulnerability, post disaster information capture and how both can point to effective mitigation options. Risk is the combination of several components (hazard, exposure, vulnerability and impact) that combine to provide measures that can be very useful for decision makers. Vulnerability is the key link that translates hazard exposure to consequence. Vulnerability is typically expressed in physical terms but includes interdependent utility system vulnerability, economic activity vulnerability and the social vulnerability of communities. All four vulnerability types have been the subject of research at GA but the physical vulnerability is the primary link to the others. Vulnerability research for Australian infrastructure will be presented in the context of a holistic risk framework. Furthermore, the work in the Philippines to develop a first order national suite of models will also be presented. Post disaster survey data is invaluable for understanding the nature of asset vulnerability, developing empirical models and validating analytical models based on structural models. Geoscience Australia has developed a range of tools to assist with damage capture that have been used for several hazard types, including earthquake. Tools include portable street view imagery capture, GPS technology and hand-held computers. Experience with the application of these tools and the information that has been derived will be described along with current activity to improve their utility.

  • The Mount Lofty and Flinders Ranges of South Australia are bound on the east and the west by reverse faults that thrust Proterozoic and/or Cambrian basement rocks over Quaternary sediment. These faults range from a few tens to almost one hundred kilometres in length and tend to be spaced significantly less than a fault length apart. In the few instances where the thickness of overthrust sediment can be estimated, total neotectonic throws are in the order of 100-200 m. Slip rates on individual faults range from 0.02-0.17 mm/a, with one unconfirmed estimate as high as 0.7 mm/a. Taking into account the intermittent nature of faulting in Australia, it has been suggested that 30-50% of the present-day elevation of the Flinders and Mount Lofty Ranges relative to adjacent piedmonts has developed in the last 5 Ma. Uplifted last interglacial shorelines (ca. 120 ka) along the southern coastline of the Mount Lofty Ranges indicate that deformation is ongoing. Palaeoseismological investigations provide important insight into the characteristics of the large earthquakes responsible for deformation events. Single event displacements of 1.8 m have been measured on the Williamstown-Meadows Fault and the Alma Fault, with the former relating to a surface rupture length of a least 25 km. Further to the south in Adelaide's eastern suburbs, a 5 km section of scarp, potentially relating to a single event slip on the Eden-Burnside Fault, is preserved in ca. 120 ka sediments. Where the Eden-Burnside Fault meets the coast at Port Stanvac 20 kilometres south, the last interglacial shoreline is uplifted by 2 m relative to its expected position. At Normanville, on the uplifted side of the Willunga Fault, the last interglacial shoreline is over 10 m above its expected position, implying perhaps five or more surface rupturing events in the last ca. 120 ka on this >50 km long fault. On the eastern range front, a very large single event displacement of 7 m is inferred on the 54 km long Milendella Fault, and the 79 km long Encounter Fault displaces last interglacial shorelines by up to 11 m. There is abundant evidence for large surface-breaking earthquakes on many faults within 100 km of the Adelaide CBD. Slip rates are low by plate margin standards, implying a low rate of recurrence for M7+ events on individual faults (perhaps 10,000 years or more). However, a proximal moderate-sized event or even a large event at distance has the potential to cause significant damage to Adelaide, particularly given its construction types and local site conditions.

  • Occurring in the southwest of Western Australia, the 1968 Meckering earthquake (MS 6.8) resulted in the formation of an extensive surface rupture complex comprising faults with a range of orientations and demonstrating reverse and dextral lateral offsets. The rupture extended for approximately 37 km and scarps were as high as 2.5 m high near to the centre of the complex. Modeling of the seismological characteristics of the source show reverse failure occurred on a north-south striking, east-dipping, surface, but how this is related to the local Precambrian bedrock geology is not clear.Interpretation of new aeromagnetic data, together with subsequent ground-truthing, has allowed concealed bedrock lithology and structure to be mapped in previously unachievable detail. These data show that the surface faulting correlates closely with linear magnetic anomalies, interpreted as dykes/faults and lithological contacts. The apparent arcuate form of the fault complex is explained in terms of the reactivation of northeasterly (dykes and faults) and northwesterly (stratigraphic) trending features in a stress regime with an east-west oriented maximum principal stress. Space problems created where these two trends converge led to the creation/reactivation of a linking north-south trending thrust fault which accommodated the greatest displacements recorded for the 1968 event. This interpretation is consistent with previous research on the source parameters of Meckering event, which invoked one or more easterly dipping failure surfaces and reverse slip.

  • Legacy product - no abstract available