earthquakes
Type of resources
Keywords
Publication year
Scale
Topics
-
Since the 2004 Sumatra-Andaman Earthquake, understanding the potential for tsunami impact on coastlines has become a high priority for Australia and other countries in the Asia-Pacific region. Tsunami warning systems have a need to rapidly assess the potential impact of specific events, and hazard assessments require an understanding of all potential events that might be of concern. Both of these needs can be addressed through numerical modelling, but there are often significant uncertainties associated with the three physical properties that culminate in tsunami impact: excitation, propagation and runup. This talk will focus on the first of these, and attempt to establish that seismic models of the tsunami source are adequate for rapidly and accurately establishing initial conditions for forecasting tsunami impacts at regional and teletsunami distances. Specifically, we derive fault slip models via inversion of teleseismic waveform data, and use these slip models to compute seafloor deformation that is used as the initial condition for tsunami propagation. The resulting tsunami waveforms are compared with observed waveforms recorded by ocean bottom pressure recorders (BPRs). We show that, at least for the large megathrust earthquakes that are the most frequent source of damaging tsunami, the open-ocean tsunami recorded by the BPRs are well predicted by the seismic source models. For smaller earthquakes, or those which occur on steeply dipping faults, however, the excitation and propagation of the resulting tsunami can be significantly influenced by 3D hydrodynamics and by dispersion, respectively. This makes it mode difficult to predict the tsunami waveforms.
-
On 23 March 2012, at 09:25 GMT, a MW 5.4 earthquake occurred in the eastern Musgrave Ranges region of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake to be recorded on mainland Australia for the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone comprising reverse fault scarps with a maximum vertical displacement of over 0.5 m, extensive ground cracking, and numerous rock falls. The maximum ground-shaking is estimated to have been in the order of MMI VI. The earthquake occurred in non-extended Stable Continental Region (SCR) cratonic crust, over 1900 km from the nearest plate boundary. Fewer than fifteen historic earthquakes worldwide are documented to have produced co-seismic surface deformation (i.e. faulting or folding) in the SCR setting. The record of surface deformation relating to the Ernabella earthquake therefore provides an important constraint on models relating surface rupture length to earthquake magnitude. Such models may be employed to better interpret Australia's rich prehistoric record of seismicity, and contribute to improved estimates of seismic hazard.
-
We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.
-
Legacy product - no abstract available
-
This paper describes the methods used to define earthquake source zones and calculate their recurrence parameters (a, b, Mmax). These values, along with the ground motion relations, effectively define the final hazard map. Definition of source zones is a highly subjective process, relying on seismology and geology to provide some quantitative guidance. Similarly the determination of Mmax is often subjective. Whilst the calculation of a and b is quantitative, the assumptions inherent in the available methods need to be considered when choosing the most appropriate one. For the new map we have maximised quantitative input into the definition of zones and their parameters. The temporal and spatial Poisson statistical properties of Australia's seismicity, along with models of intra-plate seismicity based on results from neotectonic, geodetic and computer modelling studies of stable continental crust, suggest a multi-layer source zonation model is required to account for the seismicity. Accordingly we propose a three layer model consisting of three large background seismicity zones covering 100% of the continent, 25 regional scale source zones covering ~50% of the continent, and 44 hotspot zones covering 2% of the continent. A new algorithm was developed to calculate a and b. This algorithm was designed to minimise the problems with both the maximum likelihood method (which is sensitive to the effects of varying magnitude completeness at small magnitudes) and the least squares regression method (which is sensitive to the presence of outlier large magnitude earthquakes). This enabled fully automated calculation of a and b parameters for all sources zones. The assignment of Mmax for the zones was based on the results of a statistical analysis of neotectonic fault scarps.
-
This document presents an assessment of two earthquake scenarios in Melbourne. The two earthquake scenarios are considered the maximum magnitude earthquakes possible on the two fault structures; the Beaumaris Monocline and the Selwyn Fault. The assessments are based on using GA's earthquake risk modelling software, EQRM. The software is an open-source code that is capable of modelling earthquake scenario ground motion and scenario loss. Necessary inputs include the geometry of the fault structures, appropriate ground-motion and site classification models for the area concerned and exposure information describing the built environment. Impact assessment outputs include ground shaking intensity and residential loss estimates. The information from this scenario assessment can be used to inform emergency management planning and preparation in Victoria and support the national understanding of earthquake impact.
-
In order to calibrate earthquake loss models for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system, two databases have been developed: an Atlas of ShakeMaps and a catalog of human population exposures to moderate to strong ground shaking (EXPO-CAT). The full ShakeMap Atlas currently contains over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by merging Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. Two applications of EXPO-CAT are illustrated: i) a simple objective ranking of country vulnerability to earthquakes, and; ii) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We find only limited quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Finally, we combine all the Atlas ShakeMaps to produce a global map of the peak ground acceleration (PGA) observed in the past 35 years, and compare this composite ShakeMap with existing global hazard models. In general, these analyses suggest that existing global and regional hazard maps tend to overestimate hazard.
-
The Australian Seismological Report 2010 provides a summary of earthquake activity for Australia for 2010. It also provides a summary of earthquakes of Magnitude 5+ in the Australian Region, as well as an summary of Magnitude 6+ earthquakes worldwide. It has dedicated state and territory earthquake information including: largest earthquakes in the year; largest earthquakes in the state; and tables detailing all earthquakes detected by Geoscience Australia during the year. There are also contributions from PIRSA describing Seismic Networks and providing Earthquake locations for South Australia.
-
The Indonesia Earthquake Hazard Program (IEHP) is a four-year project aimed at enhancing the capacity of the Government of Indonesia (GoI) to undertake earthquake hazard and risk assessments. The IEHP is a joint collaboration between the Australia-Indonesia Facility for Disaster Reduction (AIFDR), the GoI, Indonesian Universities and Geoscience Australia.
-
Legacy product - no abstract available