geohazards
Type of resources
Keywords
Publication year
Scale
Topics
-
The recently released ISC-GEM catalogue was a joint product of the International Seismological Center (ISC) and the Global Earthquake Model (GEM). In a major undertaking it collated, from a very wide range of sources, the surface and body wave amplitude-period pairs from the pre digital era; digital MS, mb and Mw; collated Mw values for 970 earthquakes not included in the Global CMT catalogue; used these values to determine new non-linear regression relationship between MS and Mw and mb and Mw. They also collated arrival picks, from a very wide range of sources, and used these to recompute the location, initially using the EHB location algorithm then revised using the ISC location algorithm (which primarily refined the depth). The resulting catalogues consists of 18871 events that have been relocated and assigned a direct or indirect estimate of Mw. Its completeness periods are, Ms - 7.5 since 1900, Ms - 6.25 1918 and Ms - 5.5 1960. This catalogue assigns, for the first time, an Mw estimate for several Australian earthquakes. For example the 1968 Meckering earthquake the original ML, mb and MS were 6.9, 6.1 and 6.8, with empirical estimates of Mw being 6.7 or 6.8. The ISC-GEM catalogue assigns an Mw of 6.5. We will present a poster of the Australian events in this ISC_GEM catalogue showing, where available, the original ML, mb, Ms, the recalculated mb and Ms, and the assigned Mw. We will discuss the implications of this work for significant Australian earthquakes.
-
The 2004 Sumatra-Andaman Earthquake and Indian Ocean Tsunami shattered the paradigm that guided our understanding of giant subduction zone earthquakes: that massive, magnitude 9+ earthquakes occur only in subduction zones experiencing rapid subduction of young oceanic lithosphere. Although this paradigm forms the basis of discussion of subduction zone earthquakes in earth sciences textbooks, the 2004 earthquake was the final blow in an accumulating body of evidence showing that it was simply an artefact of a sparse and biased dataset (Okal, 2008). This has led to the realization that the only factor known to limit the size of megathrust earthquakes is subduction zone length. This new appreciation of subduction zone earthquake potential has important implications for the southern Asia-Pacific region. This region is transected by many thousands of km of active subduction, including the Tonga-Kermadec, Sunda Arc, and the Makran Subduction zone along the northern margin of the Arabian Sea. Judging from length alone, all of these subduction zones are capable of hosting megathrust earthquakes of magnitude greater than 8.5, and most could host earthquakes as large as the 2004 Sumatra-Andaman earthquake (Mw=9.3). Such events are without historical precedent for many countries bordering the Indian and Pacific Oceans, many of which have large coastal populations immediately proximate to subduction zones. This talk will summarize the current state of knowledge, and lack thereof, of the tsunami hazard in the southern Asia-Pacific region. I will show that 'worst case' scenarios threaten many lives in large coastal communities, but that in most cases the uncertainty in these scenarios is close to 100%. Is the tsunami risk in SE Asia and the SW Pacific really this dire as the worst-case scenarios predict? The answer to this question relies on our ability to extend the record of tsunamis beyond the historical time frame using paleotsunami research.
-
On 23 March 2012, at 09:25 GMT, a MW 5.4 earthquake occurred in the eastern Musgrave Ranges region of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake to be recorded on mainland Australia for the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone comprising reverse fault scarps with a maximum vertical displacement of over 0.5 m, extensive ground cracking, and numerous rock falls. The maximum ground-shaking is estimated to have been in the order of MMI VI. The earthquake occurred in non-extended Stable Continental Region (SCR) cratonic crust, over 1900 km from the nearest plate boundary. Fewer than fifteen historic earthquakes worldwide are documented to have produced co-seismic surface deformation (i.e. faulting or folding) in the SCR setting. The record of surface deformation relating to the Ernabella earthquake therefore provides an important constraint on models relating surface rupture length to earthquake magnitude. Such models may be employed to better interpret Australia's rich prehistoric record of seismicity, and contribute to improved estimates of seismic hazard.
-
This paper describes the methods used to define earthquake source zones and calculate their recurrence parameters (a, b, Mmax). These values, along with the ground motion relations, effectively define the final hazard map. Definition of source zones is a highly subjective process, relying on seismology and geology to provide some quantitative guidance. Similarly the determination of Mmax is often subjective. Whilst the calculation of a and b is quantitative, the assumptions inherent in the available methods need to be considered when choosing the most appropriate one. For the new map we have maximised quantitative input into the definition of zones and their parameters. The temporal and spatial Poisson statistical properties of Australia's seismicity, along with models of intra-plate seismicity based on results from neotectonic, geodetic and computer modelling studies of stable continental crust, suggest a multi-layer source zonation model is required to account for the seismicity. Accordingly we propose a three layer model consisting of three large background seismicity zones covering 100% of the continent, 25 regional scale source zones covering ~50% of the continent, and 44 hotspot zones covering 2% of the continent. A new algorithm was developed to calculate a and b. This algorithm was designed to minimise the problems with both the maximum likelihood method (which is sensitive to the effects of varying magnitude completeness at small magnitudes) and the least squares regression method (which is sensitive to the presence of outlier large magnitude earthquakes). This enabled fully automated calculation of a and b parameters for all sources zones. The assignment of Mmax for the zones was based on the results of a statistical analysis of neotectonic fault scarps.
-
Natural hazards such as floods, dam breaks, storm surges and tsunamis impact communities around the world every year. To reduce the impact, accurate modelling is required to predict where water will go, and at what speed, before the event has taken place.
-
The major tsunamis of the last few years have dramatically raised awareness of the possibility of potentially damaging tsunami reaching the shores of Australia and to the other countries in the region. Here we present three probabilistic hazard assessments for tsunami generated by megathrust earthquakes in the Indian, Pacific and southern Atlantic Oceans. One of the assessments was done for Australia, one covered the island nations in the Southwest Pacific and one was for all the countries surrounding the Indian Ocean Basin
-
Ground Motion Prediction Equations (GMPE) are a fundamental component of any seismic hazard analysis.
-
This paper discusses two of the key inputs used to produce the draft National Earthquake Hazard Map for Australia: 1) the earthquake catalogue and 2) the ground-motion prediction equations (GMPEs). The composite catalogue used draws upon information from three key catalogues for Australian and regional earthquakes; a catalogue of Australian earthquakes provided by Gary Gibson, Geoscience Australia's QUAKES, and the International Seismological Centre. A complex logic is then applied to select preferred location and magnitude of earthquakes depending on spatial and temporal criteria. Because disparate local magnitude equations were used throughout Australia, we performed first order magnitude corrections to standardise magnitude estimates to be consistent with the attenuation factors defined by contemporary local magnitude ML formulae. While most earthquake magnitudes do not change significantly, our methodology can result in reductions of up to one magnitude unit in certain cases. Subsequent ML-MW (moment magnitude) corrections were applied. The catalogue was declustered using a magnitude dependent spatio-temporal filter. Previously identified blasts were removed and a time-of-day filter was developed to further deblast the catalogue. Secondly, a suite of candidate GMPEs were systematically tested against 5% damped response spectra recorded from Australian earthquakes in eastern and Western Australia, respectively. Since many GMPEs are developed for earthquakes larger than approximately MW 5.0, much of the data recorded in Australia is below the magnitude threshold prescribed by these equations. Nevertheless, where necessary, we extrapolate these equations to lower magnitudes to test the general applicability of the GMPEs for different source zones across Australia. The relative weights of the GMPEs for the draft national hazard model were initially determined objectively by the authors using these analyses as a basis. Final GMPE weights will be assigned through consultation with key stakeholders through the AEES.
-
The report is the fourth in a series of multi-hazard case studies by the Geoscience Australia Cities Project. It is a summary report which considers tropical cyclone, including severe wind and storm tide at Gladstone. It also provides an overview of the risks posed by severe thunderstorms, floods, landslides, heatwaves, bushfires and earthquakes. Produced in conjunction with the Bureau of Meteorology and in cooperation with Queensland Department of Emergency Services, Gladstone City Council and Calliope Shire Council.
-
In addition to the devastating 1989 Newcastle earthquake, at least four other earthquakes of magnitude 5 or greater have occurred in the surrounding Hunter region since European settlement in 1804. Some of these earthquakes caused damage in areas that, at the time, were sparsely populated. Similar events, were they to occur today in populated areas, would certainly cause significant damage. The frequency with which these events have occurred in the Hunter region suggests that earthquakes pose a genuine threat to the communities there. This study presents the most comprehensive and advanced earthquake risk assessment undertaken for any Australian city to date. It has focused on the economic losses caused by damage to buildings from earthquake ground shaking, and not on the impacts from other, secondary hazards such as soil liquefaction and surface faulting. The study has adopted a probabilistic approach that makes allowances for the variability that is inherent in natural processes as well as the uncertainty in our knowledge. The results from this project will assist decision-makers involved in local and state government, policy development, the insurance industry, engineers, architects, and the building and finance industries to manage potential damage and loss of life from earthquakes in Newcastle and Lake Macquarie. The results also have implications for the earthquake risk facing larger Australian cities such as Sydney, Melbourne and Adelaide. This is due to a number of factors, including similarities between the earthquake hazard in Newcastle and Lake Macquarie and other parts of Australia, and similarities between the urban environments, particularly the composition of the building stock.