From 1 - 10 / 99
  • These datasets cover all of Gold Coast City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape Purpose: To provide highly accurate elevation data for use in risk assessment, the management of natural disasters, infrastructure planning, developing strategies to support climate change, topographic mapping and modelling. Environment description: Language: eng Character set: unknown

  • As part of the standard town capture and requirement for high-res imagery to assist with cadastral upgrade in the Wellington Shire, the opportunity was taken to survey Yeoval

  • This point data set was created to identify locations on (or near) the Australian coastline which were considered to represent significant changes in key environmental attributes of the coast as they pertain to sediment movement in the coastal zone. This data was created during and subsequent to the technical workshop hosted by Geoscience Australia in Canberra from 16-18 October 2012. This workshop brought together the team of Australian coastal science experts listed below. - Prof. Bruce Thom - University of Sydney and the Wentworth Group - Prof. Andy Short - University of Sydney - Prof. Colin Woodroffe - University of Wollongong - Dr. Ian Eliot - University of Western Australia - Mr. Chris Sharples - University of Tasmania - Dr. Brendan Brooke - Geoscience Australia - Dr. Scott Nichol - Geoscience Australia The technical workshop had the goal of creating regional (primary) and sub-regional (secondary) scale coastal sediment compartments - spatial zones (represented by polygons) within (or between) which sediment movement could be considered on scales and timeframes relevant to coastal management. The first step in this process involved the expert panel identifying and defining boundary points along the Australian coastline, after which the expert panel assigned relevant environmental attributes to each point. Following the development of the boundary points data set, breaklines representing the coast-perpendicular compartment boundaries were generated by extending a line from the defined offshore bathymetric contour to the defined onshore elevation contour. In every case a compartment breakline extends seaward and landward of its boundary point.

  • This job is part of the town capture program

  • In May 2013, Geoscience Australia, in collaboration with the Australian Institute of Marine Science, undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Heyward Formation (the seal unit overlying the main reservoir). The survey collected one hundred and eleven seabed sediment samples that were analysed for their grain size, textural composition and carbonate content. This dataset includes the results of grain size analysis measured by laser diffractometer.

  • <p>A new finite volume algorithm to solve the two dimensional shallow water equations on an unstructured triangular mesh has been implemented in the open source ANUGA software, which is jointly developed by the Australian National University and Geoscience Australia. The algorithm supports discontinuouselevation, or `jumps in the bed profile between neighbouring cells. This has a number of benefits compared with previously implemented continuous-elevation approaches. Firstly it can preserve stationary states at wetdry fronts without using any mesh porosity type treatment. It can also simulate very shallow frictionally dominated flow down sloping topography, as typically occurs in direct-rainfall flood models. In the latter situation, mesh porosity type treatments lead to artificial storage of mass in cells and associated mass conservation issues, whereas continuous-elevation approaches with good performance on shallow frictionally dominated flows tend to have difficulties preserving stationary states near wet-dry fronts. The discontinuous-elevation approach shows good performance in both situations, and mass is conserved to a very high degree, consistent with floating point error. <p>A further benefit of the discontinuous-elevation approach, when combined with an unstructured mesh, is that the model can sharply resolve rapid changes in the topography associated with e.g. narrow prismatic drainage channels, or buildings, without the computational expense of a very fine mesh. The boundaries between such features can be embedded in the mesh using break-lines, and the user can optionally specify that different elevation datasets are used to set the elevation within different parts of the mesh (e.g. often it is convenient to use a raster DEM in terrestrial areas, and surveyed channel bed points in rivers). <p>The discontinuous elevation approach also supports a simple and computationally efficient treatment of river walls. These are arbitrarily narrow walls between cells, higher than the topography on either side, where the flow is controlled by a weir equation and optionally transitions back to the shallow water solution for sufficiently submerged flows. This allows modelling of levees or lateral weirs much finer than the mesh size. A number of benchmark tests are presented illustrating these features of the algorithm. All these features of the model can be run in serial or parallel, on clusters or shared memory machines, with good efficiency improvements on 10s-100s of cores depending on the number of mesh triangles and other case-specific details

  • This report presents the location and sources of sediment samples and observational data in the Vestfold Hills (between 68° 23' and 68° 40' S, 77° 50' and 78° 35' E) to provide physical and chemical properties, sedimentary processes, and glacial and marine history of the terrestrial environment. This compilation of samples and observations incorporates data collected from the 1970s to present from published and unpublished sources. Sample locations and types are presented here to make them more readily available for further analysis and interpretation. Samples and observations are presented as point locations and include sample type, analyses, and references to the original data source.

  • The Primary Coastal Sediment Compartment data set represents a regional-scale (1:250 000 - 1:100 000) compartmentalisation of the Australian coastal zone into spatial units within (and between) which sediment movement processes are considered to be significant at scales relevant to coastal management. The Primary and accompanying Secondary Coastal Sediment Compartment data sets were created by a panel of coastal science experts who developed a series of broader scale data sets (Coastal Realms, Regions and Divisions) in order to hierarchically subdivide the coastal zone on the basis of key environmental attributes. Once the regional (1:250 000) scale was reached expert knowledge of coastal geomorphology and processes was used to further refine the sub-division and create both the Primary and Secondary Sediment Compartment data sets. Environmental factors determining the occurrence and extents of these compartments include major geological structures, major geomorphic process boundaries, orientation of the coastline and recurring patterns of landform and geology - these attributes are given in priority order below. 1 - Gross lithological/geological changes (e.g. transition from sedimentary to igneous rocks). 2 - Geomorphic (topographic) features characterising a compartment boundary (often bedrock-controlled) (e.g. peninsulas, headlands, cliffs). 3 - Dominant landform types (e.g. large cuspate foreland, tombolos and extensive sandy beaches versus headland-bound pocket beaches). 4 - Changes in the orientation (aspect) of the shoreline.

  • Kakadu_2004_ortho_DEM

  • Melbourne 2007-2008