From 1 - 10 / 88
  • Geoscience Australia (GA) has created a unique collection of 3D structural and geological models and model inputs for Australia and its near shore regions. Currently the collection contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale. The approximately 40 regional scale models in the collection cover roughly 1/3 of the Australian continent. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. The geologic models represent the integration of geophysical surveys, seismic surveys, borehole data, field geology, and geochemical data, the majority of which will now be available through this and other RDSI collections. In their current form, the 3D models provide a valuable input to simulations of geological processes. However, the plan over time is to use the HPC capability at NCI and the large storage volumes available to dynamically integrate the various models and geological, geochemical and geophysical derivative products to then create a unified 3D model for the entire continent. Separately and then cumulatively, these models will provide an important new basis for describing and understanding Australia's geologic evolution and resource wealth. Currently there are no international open standards for the development and storage of 3D geological models, which is why they are difficult to integrate or stitch into nationally integrated data sets. The lack of consistency of the models means that each has to be transformed into formats compatible with existing HP modelling and simulation software. It is hoped that through exposing these 3D geological models into a HP collaborative environment that this will foster and accelerate the development of international standards and tools necessary for the assimilation of 3D geological models into a variety of HP programs. <b> Note: This record has been superseded by eCat 144629:</b> - <a href="https://pid.geoscience.gov.au/dataset/ga/144629">https://pid.geoscience.gov.au/dataset/ga/144629</a>

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's Australian geological field notebooks. Digitisation and transcription of these notebooks by a dedicated team of volunteers via the Australian Museum's DigiVol Citizen Science platform is ongoing (subject to annual funding). The Australian field notebooks contain the geological observations recorded by geologists of Geoscience Australia (GA) and its predecessors during fieldwork across the country from the 1930s until paper notebooks were replaced by electronic devices. The intention of this work is to make the content of these unique historical artefacts more widely accessible to researchers and the public. At present, access to the majority of the field notebooks is only available by visiting the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia in Canberra. However, individual records for the Australian notebooks can be found in the Library's online catalogue, at: <a href="https://geoscienceaustralia.intersearch.com.au">https://geoscienceaustralia.intersearch.com.au</a>.

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's 219 Papua New Guinea geological field notebooks. Digitised copies of the notebooks are being transcribed and validated by a dedicated team of volunteers from around Australia via the Australian Museum's DigiVol Citizen Science transcription platform. This project is being managed by Information Systems and Services Librarian Robert Blyth. The PNG field notebooks contain the geological observations recorded by Bureau of Mineral Resources and AGSO geologists during their field trips to pre- and post-Independence Papua New Guinea from the 1950s to the 1990s. Individual records for these notebooks are not yet available in eCat, but are in the Library's online catalogue (go to <a href="https://geoscienceaustralia.intersearch.com.au">https://geoscienceaustralia.intersearch.com.au</a>, click on Lists at top left and select PNG Field Notebooks). Processing of the image and transcription files is continuing, with the aim of making these available in eCat when this work is complete. The original field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The gravity data collection contains both onshore and offshore data acquired on geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector.

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This data package brings together a suite of datasets which describe the seabed environments and shallow geology of the Leveque Shelf, Browse Basin.

  • The SDE Best Available Geographic Database (SBAGD) is a historic database comprising the GEODATA TOPO 250K Series 3 data and any updates that were made from 2008-2013. This vector data represents major topographic features and has been sourced through many programs such as the National Topographic Information Coordination Initiative (NTICI). The topographic data complies with the Topographic Data and Map Specifications for the National Topographic Database & NTMS Series 1:250 000 & 1:100 000 scale topographic map products version 6.0.

  • Digital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height of the aircraft above the ground and the aircraft GPS records the height of the aircraft above the ellipsoid. Subtracting the two values enables the height of the terrain beneath the aircraft relative to the ellipsoid to be calculated. This ellipsoidal terrain height is corrected for the variation between the ellipsoid and the geoid (the n-value correction) to produce terrain heights relative to sea level.

  • The AGSO Yearbooks retained the format of the BMR Yearbooks, the title change merely following the renaming of the Bureau to the Australian Geological Survey Organisation in 1992. The series ended in 1994, when AGSO became part of the Department of Primary Industries and Energy and information on its activities was incorporated into DPIE Annual Reports.

  • Digital Elevation Model (DEM) for bathymetry of areas of interest around Australia. These models have a 30m-resolution. <b>Value: </b>Bathymetry mapping of the seafloor is vital for the protection of the coastal region, allowing for the safe navigation of shipping and improved environmental management. <b>Scope: </b>Areas include: Northern Australia, Great Barrier Reef, and Bass Strait.

  • On behalf of Australia, and in support of the Malaysian accident investigation, the Australian Transport Safety Bureau (ATSB) led search operations for missing Malaysian Airlines flight MH370 in the Southern Indian Ocean. Geoscience Australia provided advice, expertise and support to the ATSB to facilitate marine surveys, which were undertaken to provide a detailed map of the sea floor topography to aid navigation during the underwater search. Prior to the Phase 1 bathymetric survey, very little was known about the sea floor in the MH370 search area, as few marine surveys have taken place in the area. Existing maps of the sea floor were coarse, having been derived from satellites and only providing a general indication of water depth. Before the underwater search for MH370 could begin, it was necessary to accurately map the sea floor to ensure that the search was undertaken safely and effectively. Survey vessels spent months at sea, scanning the sea floor with multibeam sonar and side scan sonar to gather detailed, high-resolution data. This collation of datasets on the National Computational Infrastructure contains the high resolution raw and processed data acquired during Phase 2 of the search for MH370 as received by third party operators. The Phase 2 underwater search data was acquired by multiple vessels, including the Fugro Equator, Fugro Supporter, Fugro Discovery, Havila Harmony, Dong Hai Jiu 101 and Go Phoenix. Surveys were conducted using towed and autonomous underwater vehicles between September 2014 to January 2017, collecting over 121,000 square kilometres of high resolution data in the search area. All material and data from this access point is subject to copyright. Please note the creative commons copyright notice and relating to the re-use of this material. Geoscience Australia's preference is that you attribute the datasets (and any material sourced from it) using the following wording: Source: Governments of Australia, Malaysia and the People's Republic of China, 2018. MH370 Phase 2 data - Raw and processed. For additional assistance, please contact marine@ga.gov.au. We honour the memory of those who have lost their lives and acknowledge the enormous loss felt by their loved ones.