From 1 - 10 / 36
  • We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. Heavy mineral presence/absence, absolute and relative abundance, and co-occurrence are metrics useful to map, discover and interpret catchment lithotype(s), geodynamic setting, magmatism, metamorphic grade, alteration and/or mineralization. Underpinning this vision is a pilot project, focusing on a subset from the national sediment sample archive, which is used to demonstrate the feasibility of the larger, national-scale project. We preview a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool will contribute significantly to mineral prospectivity analysis and modeling, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, lower carbon energy model. The full, peer-reviewed article can be found here: Caritat, P. de, McInnes, B.I.A., Walker, A.T., Bastrakov, E., Rowins, S.M., Prent, A.M. 2022. The Heavy Mineral Map of Australia: vision and pilot project. Minerals, 12(8), 961, https://doi.org/10.3390/min12080961

  • <p>The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the North West Margin Energy Studies Section (NWMES). This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. <p>The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018) and Dorado 1 (2018) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata. The current study aims to better understand this new petroleum system and establish its extent. <p>As part of this program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from the well Roc 2 to establish their hydrocarbon-generating potential and thermal maturity.

  • <div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates.&nbsp;</div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report.&nbsp;</div><div><br></div>

  • <div>The Heavy Mineral Map of Australia (HMMA) project1, part of Geoscience Australia’s Exploring for the Future program, determined the abundance and distribution of heavy minerals (HMs; specific gravity >2.9 g/cm3) in 1315 floodplain sediment samples obtained from Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project2. Archived NGSA samples from floodplain landforms were sub-sampled with the 75-430 µm fraction subjected to dense media separation and automated mineralogy assay using a TESCAN Integrated Mineral Analysis (TIMA) instrument at Curtin University.</div><div><br></div><div>Interpretation of the massive number of mineral observations generated during the project (~150&nbsp;million mineral observations; 166 unique mineral species) required the development of a novel workflow to allow end users to discover, visualise and interpret mineral co-occurrence and spatial relationships. Mineral Network Analysis (MNA) has been shown to be a dynamic and quantitative tool capable of revealing and visualizing complex patterns of abundance, diversity and distribution in large mineralogical data sets3. To facilitate the application of MNA for the interpretation of the HMMA dataset and efficient communication of the project results, we have developed a Mineral Network Analysis for Heavy Minerals (MNA4HM) web application utilising the ‘Shiny’ platform and R package. The MNA4HM application is used to reveal (1) the abundance and co-occurrences of heavy minerals, (2) their spatial distributions, and (3) their relations to first-order geological and geomorphological features. The latter include geological provinces, mineral deposits, topography and major river basins. Visualisation of the mineral network guides parsimonious yet meaningful mapping of minerals typomorphic of particular geological environments or mineral systems. The mineralogical dataset can be filtered or styled based on mineral attributes (e.g., simplified mineralogical classes) and properties (e.g., chemical composition).</div><div><br></div><div>In this talk we will demonstrate an optimised MNA4HM workflow (identification à mapping à interpretation) for exploration targeting selected critical minerals important for the transition to a lower carbon global economy. </div><div><br></div><div>The MNA4HM application is hosted at https://geoscienceaustralia.shinyapps.io/mna4hm and is available for use by the geological community and general public.</div> This Abstract was submitted and presented to the 2023 Goldschmidt Conference Lyon, France (https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi)

  • The values and distribution patterns of the strontium (Sr) isotope ratio 87Sr/86Sr in Earth surface materials is of use in the geological, environmental and social sciences. Ultimately, the 87Sr/86Sr ratio of any mineral or biological material reflects its value in the rock that is the parent material to the local soil and everything that lives in and on it. In Australia, there are few large-scale surveys of 87Sr/86Sr available, and here we report on a new, low-density dataset using 112 catchment outlet (floodplain) sediment samples covering 529,000 km2 of inland southeastern Australia (South Australia, New South Wales, Victoria). The coarse (<2 mm) fraction of bottom sediment samples (depth ~0.6-0.8 m) from the National Geochemical Survey of Australia were fully digested before Sr separation by chromatography and 87Sr/86Sr determination by multicollector-inductively coupled plasma-mass spectrometry. The results show a wide range of 87Sr/86Sr values from a minimum of 0.7089 to a maximum of 0.7511 (range 0.0422). The median 87Sr/86Sr (± robust standard deviation) is 0.7199 (± 0.0112), and the mean (± standard deviation) is 0.7220 (± 0.0106). The spatial patterns of the Sr isoscape observed are described and attributed to various geological sources and processes. Of note are the elevated (radiogenic) values (≥~0.7270; top quartile) contributed by (1) the Palaeozoic sedimentary country rock and (mostly felsic) igneous intrusions of the Lachlan geological region to the east of the study area; (2) the Palaeoproterozoic metamorphic rocks of the central Broken Hill region; both these sources contribute fluvial sediments into the study area; and (3) the Proterozoic to Palaeozoic rocks of the Kanmantoo, Adelaide, Gawler and Painter geological regions to the west of the area; these sources contribute radiogenic material to the region mostly by aeolian processes. Regions of low 87Sr/86Sr (≤~0.7130; bottom quartile) belong mainly to (1) a few central Murray Basin catchments; (2) some Darling Basin catchments in the northeast; and (3) a few Eromanga geological region-influenced catchments in the northwest of the study area. The new spatial dataset is publicly available through the Geoscience Australia portal (https://portal.ga.gov.au/restore/cd686f2d-c87b-41b8-8c4b-ca8af531ae7e).

  • The National Geochemical Survey of Australia (NGSA) is Australia’s first national-scale geochemical survey. It was delivered to the public on 30 June 2011, after almost five years of stakeholder engagement, strategic planning, sample collection, preparation and analysis, quality assurance/quality control, and preliminary data analytics. The project was comprehensively documented in seven initial open-file reports and six data and map sets, followed over the next decade by more than 70 well-cited scientific publications. This review compiles the body of work and knowledge that emanated from the project to-date as an indication of the impact the NGSA had over the decade 2011-2021. The geochemical fabric of Australia as never seen before has been revealed by the NGSA. This has spurred further research and stimulated the mineral exploration industry. This paper also critically looks at operational decisions taken at project time (2007-2011) that were good and perhaps – with the benefit of hindsight – not so good, with the intention of providing experiential advice for any future large-scale geochemical survey of Australia or elsewhere. Strengths of the NGSA included stakeholder engagement, holistic approach to a national survey, involvement of other geoscience agencies, collaboration on quality assurance with international partners, and targeted promotion of results. Weaknesses included gaining successful access to all parts of the nation, and management of sample processing in laboratories. <b>Citation:</b> Patrice de Caritat; The National Geochemical Survey of Australia: review and impact. <i>Geochemistry: Exploration, Environment, Analysis </i>2022;; 22 (4): geochem2022–032. doi: https://doi.org/10.1144/geochem2022-032 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)

  • The National Geochemical Survey of Australia (<a href="http://www.ga.gov.au/ngsa" title="NGSA website" target="_blank">NGSA</a>) is Australia’s only internally consistent, continental-scale <a href="http://dx.doi.org/10.11636/Record.2011.020" title="NGSA geochemical atlas and dataset" target="_blank">geochemical atlas and dataset</a>. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Darling-Curnamona-Delamerian (<a href="https://www.ga.gov.au/eftf/projects/darling-curnamona-delamerian" title="DCD website" target="_blank">DCD</a>) region of southeastern Australia for the first partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (<a href="https://www.ga.gov.au/eftf" title="EFTF website" target="_blank">EFTF</a>) program. The selected 223 NGSA sediment samples fall within the DCD polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity >2.9 g/cm<sup>3</sup>) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified over 140 different HMs in the DCD area. The dataset, consisting of over 29 million individual mineral grains identified, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis tool (<a href="https://geoscienceaustralia.shinyapps.io/mna4hm/" title="MNA website" target="_blank">MNA</a>) built on a cloud-based platform. Accompanying this report are a data file of TIMA results and a mineralogy vocabulary file. When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.

  • Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).

  • The Paleo- to Mesoproterozoic McArthur Basin and Mount Isa region of northern Australia (Figure 1) is richly-endowed with a range of deposit types (e.g., Ahmad et al., 2013; Geological Survey of Queensland, 2011). These include the basin-hosted base metal (Zn-Pb-Ag) deposits of the North Australian Zinc Belt, the richest zinc province in the world (Geological Survey of Queensland, 2011; Huston et al., 2006), as well as Cu (e.g., Mt Isa Copper) and IOCG (e.g., Ernest Henry) deposits (Geological Survey of Queensland, 2011). The giant size of the base metal deposits makes them attractive exploration targets and significant effort has been undertaken in understanding their genesis and setting and developing methodologies and data sets to aid in further discovery. As part of its Exploring for the Future program, Geoscience Australia is acquiring new, and reprocessing old, data sets to provide industry with new exploration tools for these basin-hosted Zn-Pb and Cu deposits, as well as iron-oxide copper-gold deposits. We have adopted a mineral systems approach (e.g., Huston et al., 2016) focussing on regional aspects such as source rocks, locations of mineral deposits, mineralisation haloes and footprints. Increased understanding of these aspects requires knowledge of the background variability of unaltered rocks within the basin. To assist in this we have undertaken a campaign of baseline geochemical studies, with over 800 new samples collected from sedimentary and igneous units of selected parts of the greater McArthur Basin–Mount Isa region. This has allowed us to document temporal and regional background geochemical (and mineralogical) variation within, and between sedimentary and igneous units. The main focus of this work was directed towards aspects of base metal mineralisation; a concurrent GA study (e.g., Jarrett et al., 2019) looking at aspects of hydrocarbon potential was undertaken in parallel. Appeared in Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 24-25 March 2020, p. 105

  • Rapid, efficient, and accurate prediction of mineral occurrence that takes uncertainty into 20 account is essential to optimise defining exploration targets. Traditional approaches to mineral 21 potential mapping often fail to fully appreciate spatial uncertainties of input predictors and their 22 spatial cross-correlation. In this study a stochastic technique based on multivariate 23 geostatistical simulations and ensemble tree-based learners is introduced for predicting and 24 uncertainty quantification of mineral exploration targets. The technique is tested on a synthetic 25 case inspired by the characteristics of a hydrothermal mineral system model and a real-world 26 dataset from the Yilgarn Craton in Western Australia. Results from the two cases proved the 27 superior performance and robustness of the proposed stochastic technique, especially when 28 dealing with high dimensional and large data sets. <b>Citation:</b> Talebi, H., Mueller, U., Peeters, L.J.M. et al. Stochastic Modelling of Mineral Exploration Targets. <i>Math Geosci </i>54, 593–621 (2022). https://doi.org/10.1007/s11004-021-09989-z