AU-EEZ
Type of resources
Keywords
Publication year
Scale
Topics
-
Selected geomorphic features and sedimentary facies were mapped in 283 of Australia's wave- and tide-dominated estuaries and deltas to quantitatively evaluate established evolutionary facies models that depict the evolution of estuaries into deltas during stable sea level conditions. While diagnostic facies for wave- and tide-dominated estuaries and deltas approximate those specified by the models, statistical analyses of the data also reveal two additional insights regarding the evolution of estuaries to deltas. First, there is an offshore shift in the locus of sand accumulation between tide-dominated estuaries and deltas, associated with the onset of delta development. Second, the mean surface area of intertidal environments (i.e., intertidal flats, mangroves/melaleuca, saltmarsh/salt flat facies) is greater in wave-dominated deltas than in wave-dominated estuaries. Tidal penetration associated with the river establishing a more direct and permanent connection to the sea during late-stage development presents a natural impediment to continued formation of an alluvial plain and full development of the 'classic' wave-dominated delta morphology. A notional evolutionary pathway for wave-dominated estuaries is developed from the distribution of facies that predicts the rate and susceptibility of geomorphic and habitat changes. The 'classic' deltaic geomorphology may be unattainable for wave-dominated systems, except those with significant terrigenous sediment inputs. Our study is the first published example of geomorphic and sedimentary data assembled from a large number of wave- and tide-dominated estuaries and deltas across an entire continent.
-
The collection consists of seabed samples collected by Geoscience Australia and other organizations since the 1950s. Samples consist of various shallow cores types, rocks derived from dredging, and sea bed sediments collected by grab and dredge methods. A large proportion of samples are refrigerated.
-
A nationally-consistent wave resource assessment is presented for Australian shelf (<300 m) waters. Wave energy and power were derived from significant wave height and period, and wave direction hindcast using the AusWAM model for the period 1 March 1997 to 29 February 2008 inclusive. The spatial distribution of wave energy and power is available on a 0.1° grid covering 110'156° longitude and 7'46° latitude. Total instantaneous wave energy on the entire Australian shelf is on average 3.47 PJ. Wave power is greatest on the 3,000 km-long southern Australian shelf (Tasmania/Victoria, southern Western Australia and South Australia), where it widely attains a time-average value of 25-35 kW m-1 (90th percentile of 60-78 kW m-1), delivering 800-1100 GJ m-1 of energy in an average year. New South Wales and southern Queensland shelves, with moderate levels of wave power (time-average: 10-20 kW m-1; 90th percentile: 20-30 kW m-1), are also potential sites for electricity generation due to them having a similar reliability in resource delivery to the southern margin. Time-average wave power for most of the northern Australian shelf is <10 kW m-1. Seasonal variations in wave power are consistent with regional weather patterns, which are characterised by winter SE trade winds/summer monsoon in the north and winter temperate storms/summer sea breezes in the south. The nationally-consistent wave resource assessment for Australian shelf waters can be used to inform policy development and site-selection decisions by industry.
-
The dataset provides the spatially continuous data of the seabed gravel content (sediment fraction >2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment gravel content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
Simple, conceptual geomorphic models can assist environmental managers in making informed decisions regarding management of the coast at continental and regional scales. This basic information, detected from aerial photographs and/or satellite images, can be used to ascertain the relative significance of several common environmental issues, including: sediment trapping efficiency, turbidity, water circulation, and habitat change due to sedimentation for different types of clastic coastal depositional environments.
-
The Australian Geological Survey Organistaion, in co-operation with Desmond Fitzgerald and Associates and the Australian Hydrographic Service, has produced a set of digital bathymetry, gravity and magnetic grids for Australia's margin, with resolutions of 250-1000m. They represent a major upgrade of marine ship-track potential field and bathymetry data in Australian waters for the purpose of developing fundamental products for geological interpretation. In integrating data from many sources, levelling techniques have been developed to correct crossover and other errors, and the ship-track data have been merged with satellite and high-resolution onshore sources.
-
This dataset provides the spatially continuous data of seabed gravel (sediment fraction >2000 µm), mud (sediment fraction < 63 µm) and sand content (sediment fraction 63-2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.0025 decimal degree (dd) resolution raster grids format and ascii text file. The dataset covers the Vlaming sub-basin in the Australian continental EEZ. This dataset supersedes previous predictions of sediment gravel, mud and sand content for the basin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at the basin scale. The dataset may not be appropriate for use at smaller scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
This includes collection of core from sonic drilling and soil and water samples from boreholes and surface water. The Core is stored in plastic in core trays (4 x 1m). The water samples are disposed of once analysed.
-
This dataset provides the spatially continuous data of the seabed sand content (sediment fraction 63-2000 mm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.01 decimal degree resolution raster format. The dataset covers the Australian continental EEZ, including seabed surrounding Tasmania. It does not include areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands or Australia's marine jurisdiction off of the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This dataset supersedes previous predictions of sediment sand content for the Australian Margin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at national and regional scales. The dataset may not be appropriate for use at local scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
The Corporate Archive consists of deposited copies of all internal publications and documents of the agency and its predecessors: the Bureau of Mineral Resources, Australian Geological Survey Organisation and those which have merged with it over the years, such as AUSLIG. These include unique material such as field notebooks and a small quantity of manuscripts. Unrestricted items in this collection are currently being digitised to improve access