From 1 - 10 / 195
  • Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3, CO2, and C is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26-0.28 Mt which yields 2.36-2.72 x105 mol yr-1 over the mid- to late-Holocene (<10.5 kyr BP); the period in which the reefs have been active. Holocene CO2 and C production is 0.14-0.16 Mt and 0.06-0.07 Mt, yielding 3.23-3.71 and 5.32-6.12 x105 mol yr-1, respectively. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a 'give-up' growth history, and presumed significant dissolution and exports. Total global contribution of submerged reefs to Holocene neritic CaCO3 is estimated to be 0.26-0.62 Gt or 2.55-6.17 x108 mol yr-1, which yields 0.15-0.37 Gt CO2 (3.48-8.42 x108 mol yr-1) and 0.07-0.17 Gt C (5.74-13.99 x108 mol yr-1). Contributions from submerged coral reefs in Australia are estimated to be 0.05 Gt CaCO3 (0.48 x108 mol yr-1), 0.03 Gt CO2 (0.65 x108 mol yr-1), and 0.01 Gt C (1.08 x108 mol yr-1) for an emergent reef area of 47.9 x103 km2. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3, CO2, and C that is poorly-quantified for global budgets.

  • Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney. More than a dozen major faults and monoclinal flexures have been mapped along its extent. The Lapstone Monocline is the most prominent of the flexures, and accounts for more than three quarters of the deformation across the complex at its northern end. Opinion varies as to whether recent tectonism, or erosional exhumation of a pre-existing structure, better accounts for the deeply dissected Blue Mountains plateau that we see today. Geomorphic features such as the abandoned meanders at Thirlmere Lakes illustrate the antiquity of the landscape and favour an erosional exhumation model. According to this model, over-steepened reaches developed in easterly flowing streams at the Lapstone Monocline when down-cutting through shale reached more resistant sandstone on the western side of the LSC. These over-steepened reaches drove headward (westerly) knick point retreat, ultimately dissecting the plateau. However, a series of swamps and lakes occurring where small easterly flowing streams cross the westernmost faults of the LSC, coupled with over-steepened reaches 'pinned' to the fault zones in nearby larger streams, imply that tectonism plays a continuing role in the development of this landscape. We present preliminary results from an ongoing investigation of Mountain Lagoon, a small fault-bound basin bordering the Kurrajong Fault in the northern part of the LSC.

  • The legacy of multiple marine transgressions is preserved in a complex morphology of ridges, mounds and reefs on the Carnarvon continental shelf, Western Australia. High-resolution multibeam sonar mapping, underwater photography and sampling across a 280 km2 area seaward of the Ningaloo Coast World Heritage Area shows that these raised features provide hardground habitat for modern coral and sponge communities. Prominent among these features is a 20 m high and 15 km long shore-parallel ridge at 60 m water depth. This ridge preserves the largely unaltered form of a fringing reef and is interpreted as the predecessor to modern Ningaloo Reef. Landward of the drowned reef, the inner shelf is covered by hundreds of mounds (bommies) up to 5 m high and linear ridges up to 1.5 km long and 16 m high. The ridges are uniformly oriented to the north-northeast and several converge at their landward limit. On the basis of their shape and alignment, these ridges are interpreted as relict long-walled parabolic dunes. Their preservation is attributed to cementation of calcareous sands to form aeolianite, prior to the post-glacial marine transgression. Some dune ridges abut areas of reef that rise to sea level and are highly irregular in outline but maintain a broad shore-parallel trend. These are tentatively interpreted as Last Interglacial in age. The mid-shelf and outer shelf are mostly sediment covered with relatively low densities of epibenthic biota and have patches of low-profile ridges that may also be relict reef shorelines. An evolutionary model for the Carnarvon shelf is proposed that relates the formation of drowned fringing reefs and aeolian dunes to Late Quaternary eustatic sea level.

  • Abstract: Compressional deformation is a common phase in the post-rift evolution of passive margins and rift systems. The central-west Western Australian margin, between Geraldton and Karratha, provides an excellent example of a strain gradient between inverting passive margin crust and adjacent continental crust. The distribution of contemporary seismicity in the region indicates a concentration of strain release within the Phanerozoic basins which diminishes eastward into the cratons. While few data exist to quantify uplift or slip rates, this gradient can be qualitatively demonstrated by tectonic landforms which indicate that the last century or so of seismicity is representative of patterns of Neogene and younger deformation. Pleistocene marine terraces on the western side of Cape Range indicate uplift rates of several tens of metres per million years, with similar deformation resulting in sub-aerial emergence of Miocene strata on Barrow Island and elsewhere. Northeast of Kalbarri near the eastern margin of the southern Carnarvon Basin, marine strandlines are displaced by a few tens of metres. A possible Pliocene age would indicate that uplift rates are an order of magnitude lower than further west. Relief production rates in the western Yilgarn Craton are lower still - numerous scarps (e.g. Mount Narryer) appear to relate individually to <10 m of displacement across Neogene strata. Quantitative analysis of time-averaged deformation preserved in the aforementioned landforms, including study of scarp length as a proxy for earthquake magnitude, has the potential to provide useful constraints on seismic hazard assessments in a region containing major population centres and nationally significant infrastructure.

  • Remotely sensed imagery has been used extensively in geomorphology since the availability of early Landsat data. Since that time, there has been a steady increase in the range of sensors offering data with increased spatial and spectral resolutions, from both government and commercial satellites. This has been augmented with an increase in the amount and range of airborne surveys carried out. Since 2000, digital elevation models have become widely available through the application of interferometric synthetic aperture radar, photogrammetry and laser altimetry (specifically LiDAR) with extensive uptake by geomorphologists. In addition, hyperspectral imaging, radiometrics and electromagentics have been made more accessible, whilst there has been increased use of close-range (<200 m) imaging techniques for very high resolution imaging. This paper reviews the primary sources for DEMs from satellite and airborne platforms, as well as briefly reviewing more traditional multi-spectral scanners, and radiometric and electromagnetic systems. Examples of the applications of these techniques are summarised and presented within the context of landscape pattern recognition and modelling. Finally, the wider issues of access to geographic information and data distribution are discussed.

  • The 2004 Sumatra-Andaman Earthquake and Indian Ocean Tsunami shattered the paradigm that guided our understanding of giant subduction zone earthquakes: that massive, magnitude 9+ earthquakes occur only in subduction zones experiencing rapid subduction of young oceanic lithosphere. Although this paradigm forms the basis of discussion of subduction zone earthquakes in earth sciences textbooks, the 2004 earthquake was the final blow in an accumulating body of evidence showing that it was simply an artefact of a sparse and biased dataset (Okal, 2008). This has led to the realization that the only factor known to limit the size of megathrust earthquakes is subduction zone length. This new appreciation of subduction zone earthquake potential has important implications for the southern Asia-Pacific region. This region is transected by many thousands of km of active subduction, including the Tonga-Kermadec, Sunda Arc, and the Makran Subduction zone along the northern margin of the Arabian Sea. Judging from length alone, all of these subduction zones are capable of hosting megathrust earthquakes of magnitude greater than 8.5, and most could host earthquakes as large as the 2004 Sumatra-Andaman earthquake (Mw=9.3). Such events are without historical precedent for many countries bordering the Indian and Pacific Oceans, many of which have large coastal populations immediately proximate to subduction zones. This talk will summarize the current state of knowledge, and lack thereof, of the tsunami hazard in the southern Asia-Pacific region. I will show that 'worst case' scenarios threaten many lives in large coastal communities, but that in most cases the uncertainty in these scenarios is close to 100%. Is the tsunami risk in SE Asia and the SW Pacific really this dire as the worst-case scenarios predict? The answer to this question relies on our ability to extend the record of tsunamis beyond the historical time frame using paleotsunami research.

  • Lord Howe Island in the southwest Pacific Ocean is the subaerial remnant of a Late Miocene hot-spot volcano. Erosion of the island has formed a shallow (20 - 120 m) sub-tropical carbonate shelf 24 km wide and 36 km long. On the mid shelf an extensive relict coral reef (165 km2) surrounds the island in water depths of 30-40 m. The relict reef comprises sand sheet, macroalgae and hardground habitats. Inboard of the relict reef a sandy basin (mean water depth 45 m) has thick sand deposits. Outboard of the relict reef is a relatively flat outer shelf (mean depth 60 m) with bedrock exposures and sandy habitat. Infauna species abundance and richness were similar for sediment samples collected on the outer shelf and relict reef features, while samples from the sandy basin had significantly lower infauna abundance and richness. The irregular shelf morphology appears to determine the distribution and character of sandy substrates and local oceanographic conditions, which in turn influence the distribution of different types of infauna communities.

  • The Australian exclusive economic zone (EEZ) contains1.6 million km2 of submarine plateaus, equal to about 13.8% of the world's known inventory of these features. This disproportionate occurrence of plateaus presents Australia with an increased global responsibility to understand and protect the benthic habitats and associated ecosystems. This special volume presents the results of two major marine surveys carried out on the Lord Howe Rise plateau during 2003 and 2007, during which benthic biological and geological samples, underwater photographs, video and multibean sonar bathymetry data were collected. The benthic habitats present on Lord Howe Rise include hard/rocky substrates covering a small area of volcanic peaks (around 31 km2) and parts of other larger seamounts (eg. the Lord Howe Island seamount) which support rich and abundant epifaunal assemblages dominated by suspension feeding invertebrates. These habitats appear to qualify as ecologically and biologically significant areas under the United Nations Convention on Biological Diversity (CBD) scientific selection criterion 1 (uniqueness or rarity), 4 (vulnerability, fragility, sensitivity or slow recovery) and 7 (naturalness). The collection of papers included in this special volume represents a major advance in knowledge about benthic habitats of the Lord Howe Rise, but also about the ecology of plateaus in general.

  • Publicly available bathymetry and geophysical data can be used to map geomorphic features of the Antarctic continental margin and adjoining ocean basins at scales of 1:1-5 million. These data can also be used to map likely locations for some Vulnerable Marine Ecosystems. Seamounts over a certain size are readily identified and submarine canyons and mid ocean ridge central valleys which harbour hydrothermal vents can be located. Geomorphic features and their properties can be related to major habitat characteristics such as sea floor type (hard versus soft), ice keel scouring, sediment deposition or erosion and current regimes. Where more detailed data are available, shelf geomorphology can be shown to provide a guide to the distribution in the area of the shelf benthic communities recognised by Gutt (2007). The geomorphic mapping method presented here provides a layer to add to benthic bioregionalistion using readily available data.