From 1 - 10 / 35
  • Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devestating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.

  • Interactive Maps is a discovery and exploration view of Geoscience Australia's geospatial services. The following scientific and decision support themes have curated content comprised of maps and functions. Each map has queries and functions with linked access to OGC (Open Geospatial Consortium) web services and metadata. This system replaces MapConnect and AMSIS applications.

  • A short film about a scientific project aimed at enhancing risk analysis capacities for flood, severe wind from tropical cyclones and earthquake in the Greater Metropolitan Manila Area. Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devastating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.

  • Tropical cyclone return period wind hazard layers developed using the Tropical Cyclone Risk Model. The hazard layers are derived from a catalogue of synthetic tropical cyclone events representing 10000 years of activity. Annual maxima are evaluated from the catalogue and used to fit a generalised extreme value distribution at each grid point.

  • The Australian Flood Risk Information Portal (the portal) is an initiative of the Australian Government, established following the devastating floods across Eastern Australia in 2011. The portal is a key component of the National Flood Risk Information Project (NFRIP), and aims to provide a single point of access to Australian flood information. Currently much of Australia's existing flood information is dispersed across disparate sources, making it difficult to find and access. The portal will host data and tools that allow public discovery, visualisation and retrieval of flood studies, flood maps, satellite derived water observations and other related information, all from a single location. The portal will host standards and guidelines for use by jurisdictions and information custodians to encourage best practice in the development of new flood risk information. While the portal will initially host existing flood information, the architecture has been designed to allow the portal content to grow over time to meet the needs of users. The aim is for the portal to display data for a range of scenarios from small to extreme events, though this will be dependent on stakeholder contributions. Geoscience Australia's Australian Flood Studies Database is the portal's data store of flood study information. The database includes metadata created through a purpose-built data entry application, and over time, information harvested from state-operated catalogues. For each entry the portal provides a summary of the flood study, including information on how the study was done, what data was used, what flood maps were produced and for what scenarios, as well as details on the custodian and originating author. If the study included an assessment of damage, details such as estimates of annual average damage, or the number of properties affected during a flood of a particular likelihood will also be included. During the last phase of development downloadable flood study reports and their associated flood maps have been added to the portal where available. As the portal is populated it will increasingly host mapped flood data, or link to flood data and maps held in authoritative databases hosted by State and Territory bodies. Mapping data to be made accessible through the portal will include flood extents and to a lesser degree information on water depths. The portal will also include water observations obtained from Geoscience Australia's historic archive of Landsat imagery. This data will show whether a particular location was 'wet' at some point during the past 30 years. While this imagery does not necessarily represent the peak of a flood or show water depth, the data will support the validation and verification process of hydrologic and hydraulic flood modelling. This work will prove useful particularly in rural areas where there is little or no flood information. The portal also provides flood information custodians with the ability to either upload mapped data directly to the portal or to make this data accessible via web services. Data management tools and standards, developed through NFRIP, will enable data custodians to map their data to agreed standards for delivery through the portal. A portal framework and supporting principles has been developed to guide the maintenance and development of the portal.

  • Stochastic finite-fault ground-motion prediction equations (GMPEs) are developed for the stable continental region of southeastern Australia (SEA). The models are based on reinterpreted source and attenuation parameters for small-to-moderate magnitude local earthquakes and a dataset augmented with ground-motion records from recent significant earthquakes. The models are applicable to horizontal-component ground-motions for earthquakes 4.0 <= MW <= 7.5 and at distances less than 400 km. The models are calibrated with updated source and attenuation parameters derived from SEA ground-motion data. Careful analysis of well-constrained earthquake stress parameters indicates a dependence on hypocentral depth. It is speculated that this is the effect of an increasing crustal stress profile with depth. However, rather than a continuous increase, the change in stress parameter appears to indicate a discrete step near 10 km depth. Average stress parameters for SEA earthquakes shallower and deeper than 10 km are estimated to be 23 MPa and 50 MPa, respectively. These stress parameters are consequently input into the stochastic ground-motion simulations for the development of two discrete GMPEs for shallow and deep events. The GMPEs developed estimate response spectral accelerations comparable to the Atkinson and Boore (2006) GMPE for eastern North America (ENA) at short rupture distances (less than approximately 100 km). However, owing to higher attenuation observed in the SEA crust (Allen and Atkinson, 2007), the SEA GMPEs estimate lower ground-motions than ENA models at larger distances. A correlation between measured VS30 and ?0 was developed from the limited data available to determine the average site condition to which the GMPEs are applicable. Assuming the correlation holds, a VS30 of approximately 820 m/s is obtained assuming an average path-independent diminution term ?0 of 0.006 s from SEA seismic stations. Consequently, the GMPE presented herein can be assumed to be appropriate for rock sites of B to BC site class in the National Earthquake Hazards Reduction Program (NEHRP, 2003) site classification scheme. The response spectral models are validated against moderate-magnitude (4.0 <= MW <= 5.3) earthquakes from eastern Australia. Overall the SEA GMPEs show low median residuals across the full range of period and distance. In contrast, ENA models tend to overestimate response spectra at larger distances. Because of these differences, the present analysis justifies the need to develop Australian-specific GMPEs where ground-motion hazard from a distant seismic source may become important.

  • This metadata relates to the ANUGA hydrodynamic modelling results for Busselton, south-west Western Australia. The results consist of inundation extent and peak momentum gridded spatial data for each of the ten modelling scenarios. The scenarios are based on Tropical Cyclone (TC) Alby that impacted Western Australia in 1978 and the combination of TC Alby with a track and time shift, sea-level rise and riverine flood scenarios. The inundation extent defines grid cells that were identified as wet within each of the modelling scenarios. The momentum results define the maximum momentum value recorded for each inundated grid cell within each modelling scenario. Refer to the professional opinion (Coastal inundation modelling for Busselton, Western Australia, under current and future climate) for details of the project.

  • On 23 March 2012, at 09:25 UTC, an Mw 5.4 earthquake occurred in the eastern Musgrave Ranges of north-central South Australia, near the community of Ernabella (Pukatja). Several small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. This was the largest earthquake recorded on mainland Australia in the past 15 years and resulted in the formation of a 1.6 km long surface deformation zone that included reverse-fault scarps with a maximum vertical displacement of more than 0.5 m, extensive ground cracking, and numerous rock falls. The earthquake occurred in non-extended stable continental region (SCR) cratonic crust, more than 1900 km from the nearest plate boundary. Surface deformation from the Ernabella earthquake provides additional constraint on relations of surface-rupture length to earthquake magnitude. Such relations aid in interpreting Australia’s rich record of prehistoric seismicity and contribute to improved estimates of SCR seismic hazard worldwide. Based upon an analysis of new and reinterpretation of existing surface-rupture length data, faults in non-extended stable cratonic Australia appear to produce longer surface ruptures (for earthquakes larger than Mw ∼ 6:5) than rupture lengths estimated using existing moment-to rupture length scaling relations. The implication is that the estimated maximum, or characteristic, magnitude of paleoearthquakes in such settings may be overestimated where the estimate is based only on the length of the prehistoric fault scarp.

  • On 23 March 2012, at 09:25 GMT, a MW 5.4 earthquake occurred in the eastern Musgrave Ranges region of north-central South Australia, near the community of Ernabella (Pukatja). This was the largest earthquake to be recorded on mainland Australia for the past 15 years and resulted in the formation of a 1.6 km-long surface deformation zone comprising reverse fault scarps with a maximum vertical displacement of over 50 cm, and extensive ground cracking. Numerous small communities in this remote part of central Australia reported the tremor, but there were no reports of injury or significant damage. The maximum ground shaking is estimated to have been in the order of MMI VI. The earthquake occurred in Stable Continental Region (SCR) crust, over 1900 km from the nearest plate boundary. Fewer than fifteen historic earthquakes worldwide are documented to have produced coseismic surface deformation (i.e. faulting or folding) in the SCR setting. The record of surface deformation relating to the Ernabella earthquake therefore provides an important constraint on models relating surface rupture length to earthquake magnitude. Such models may be employed to better interpret Australia's rich prehistoric record of seismicity, thereby improving estimates of seismic hazard.

  • <p>Geoscience Australia has recently released its 2018 National Seismic Hazard Assessment (NSHA18). Results from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 1/500 annual exceedance probability level relative to the factors adopted for the current Australian Standard AS1170.4–2007 (R2018). These new hazard estimates, coupled with larger kp factors, have challenged notions of seismic hazard in Australia in terms of the recurrence of damaging ground motions. As a consequence, the new hazard estimates have raised questions over the appropriateness of the prescribed probability level used in the AS1170.4 to determine appropriate seismic demands for the design of ordinary-use structures. Therefore, it is suggested that the ground-motion exceedance probability used in the current AS1170.4 be reviewed in light of the recent hazard assessment and the expected performance of modern buildings for rarer ground motions. <p>Whilst adjusting the AS1170.4 exceedance probability level would be a major departure from previous earthquake loading standards, it would bring it into line with other international building codes in similar tectonic environments. Additionally, it would offer opportunities to further modernise how seismic demands are considered in Australian building design. In particular, the authors highlight the following additional opportunities: 1) the use of uniform hazard spectra to replace and simplify the spectral shape factors, which do not deliver uniform hazard across all natural periods; 2) updated site amplification factors to ensure continuity with modern ground-motion models, and; 3) the potential to define design ground motions in terms of uniform collapse risk rather than uniform hazard. Estimation of seismic hazard at any location is an uncertain science. However, as our knowledge improves, our estimates of the hazard will converge on the actual – but unknowable – (time independent) hazard. It is therefore prudent to regularly update the estimates of the seismic demands in our building codes using the best available evidence-based methods and models.