From 1 - 10 / 525
  • Legacy product - no abstract available

  • How much easier it would be to map and quantify the key elements of the hydrological cycle if the Earth's surface was transparent! Unfortunately, this is not the case and it is this very inability to penetrate to sufficient depths to map and quantify groundwater components of the hydrological cycle that currently necessitates the integration of satellite- airborne- and ground observations. In Australia, important advances have been made in the last 3 years in quantifying key elements of the hydrological cycle. This has been achieved in part through the increased use of Landsat, MODIS, SPOT, hyperspectral, NOAA and LiDAR datasets to improve the mapping and quantification of surface water, evapotranspiration, soil moisture and recharge and discharge. However, significant limitations remain in using satellite-based platforms alone for quantifying catchment water balances, surface-groundwater interactions, groundwater resource estimation and managing groundwater dependent ecosystems. Increasingly, the need to map the key elements of the hydrological cycle to calibrate water balance models and for environmental management, is leading to the development of more holistic systems approaches, involving the integration of satellite-, airborne and ground-based techniques and measurements. One example is in the River Murray Corridor (RMC) in SE Australia, where previous attempts to assess the water needs for iconic floodplain wetland ecosystems, based largely on satellite-based measurements, did not adequately take into account sub-surface soil conditions and groundwater quality and processes. In floodplain environments such as the River Murray Floodplain, the factors that govern tree health are invariably complex, and include a wide range of biophysical and biogeochemical factors.

  • The lower Darling Valley contains Cenozoic shallow marine, fluvial, lacustrine and aeolian sediments including a number of previously poorly dated Quaternary fluvial units associated with the Darling River and its anabranches. New geomorphic mapping of the Darling floodplain that utilises a high resolution LiDAR dataset and SPOT imagery, has revealed that the Late Quaternary sequence consists of scroll-plain tracts of different ages incised into a higher more featureless mud-dominated floodplain. Samples for OSL (Optically-Stimulated Luminescence) and radiocarbon dating were taken in tractor-excavated pits, from sonic drill cores and from hand-auger holes from a number of scroll-plain and older floodplain sediments in the Menindee region. The youngest, now inactive, scroll-plain phase, associated with the modern Darling River, was active in the period 5-2 ka. A previous anabranch scroll-plain phase has dates around 20ka. Indistinct scroll-plain tracts older than the anabranch system, are evident both upstream and downstream of Menindee and have ages around 30ka. These three scroll-plain tracts intersect just south of Menindee but are mostly separated upstream and downstream of that point. Older dates of 50 ka, 85 ka and >150 ka have been obtained from lateral-migration sediments present beneath the higher mud-dominated floodplain. Establishing a chronology for the Quaternary fluvial landscape has been important for groundwater investigations in the Darling River floodplain area. More specifically, this has assisted in constraining the 3D mapping of floodplain units, helped constrain conceptual models of surface-groundwater interaction, and aided in the assessment of managed aquifer recharge options.

  • In this study, 3D mapping using airborne electromagnetics (AEM) was used to site a monitoring bore network in the Darling River floodplain corridor. Pressure loggers were installed in over 40 bores to monitor groundwater levels primarily in the shallow unconfined Coonambidgal Formation aquifer, deeper (semi)confined Calivil Formation and confined Renmark Group aquifers. In 2010-11, the network provided the opportunity to monitor the groundwater response to flooding of the Darling River and the replenishment of the Menindee Lakes storages, following a period of prolonged drought. In this event, the Darling River at Menindee (Weir 32) rose from 1.59m in October 2010 and peaked at 7.16m in March 2011. A synchronous rise in groundwater levels varying between 0.5-3.4m was observed in the shallow unconfined aquifer near the river. Shallow groundwater levels also declined following the flood peak. Near-river groundwater levels in the Calivil aquifer rose between 0.2-1.3m and also by 4.0 m at a site near Lake Menindee. The latter confirms lake leakage into the aquifer at this particular site, as previously inferred by the AEM data. There was also a pressure response of 0.1-0.9m evident in certain Renmark aquifer bores near the river. The monitoring confirms the importance of episodic flood events to the recharge of the alluvial aquifers, as supported by groundwater chemistry and stable isotope data. Although some of the confined aquifer response may relate to transient hydraulic loading associated with the flood, the inference is that in places there is a degree of hydraulic connectivity between the aquifers.

  • Legacy product - no abstract available

  • Report on operational activities with data, analysis and interpretation for the Gawler - Eucla demonstration study site in South Australia