From 1 - 10 / 142
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • Water resource assessment for the Great Artesian Basin. Synthesis of a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment

  • Phase 1 report (Exposure/Impact Analysis) for Assessment of Groundwater Vulnerability to Climate Change in the Pacific Islands Project.

  • Poster prepared for International Association of Hydrogeologists Congress 2013 The Broken Hill Managed Aquifer Recharge (BHMAR) project has successfully mapped a multi-layered sequence of aquitards and aquifers, as well potential groundwater resource and managed aquifer recharge (MAR) targets, in the top 100m of the Darling Floodplain. Near-surface aquitards overlying the Pliocene target aquifers (fluvial Calivil Formation (CFm) and marine Loxton-Parilla Sands (LPS)), were identified initially as variably conductive layers in airborne electromagnetic (AEM) data, and validated by drilling and complementary borehole geophysical, textural, hydrogeological and hydrochemical studies. The stratigraphic unit underlying the Pliocene aquifers is the Miocene upper Renmark Group (uRG). Drilling and AEM data have confirmed this unit is present throughout the study area, deposited predominantly as thick muds. Facies and biofacies analysis suggests these muds were deposited on a low relief sedimentary plain with a high water table and numerous permanent water bodies, with relatively minor sand bodies deposited in narrow anastomosing fixed channel streams. Groundwater in the upper uRG is saline, and muddy sediments form a strongly conductive layer beneath the Pliocene aquifers. This is a much harder geophysical target than the upper confining aquitards, as the target lies at depths of 80-120m, which is near the depth resolution of the AEM system. Furthermore, there is little conductivity contrast between the Pliocene and uRG sediments except in areas where there is fresh groundwater in the former. Hydrochemical and hydrodynamic data shows that there is limited hydrological connection between the uRG and less saline Pliocene aquifers, except where the Pliocene is underlain by uRG channel sands. These channels are much narrower (10s to ~100m) and thinner (1 to 10m) compared with palaeochannels in the overlying CFm. Where the channels are connected, there can be a distinct salinity gradient from the Pliocene into the uRG sands, indicating localised mixing. Given the potential for up-coning of saline groundwater in these instances, a number of sites (e.g. Menindee Common), have been assessed as unsuitable for MAR. Overall, the uRG muds act as a good lower confining aquitard to the Pliocene aquifers over most of the project area, including a number of potential MAR and groundwater resource targets.

  • Recent national and state assessments have concluded that sedimentary formations that underlie or are within the Great Artesian Basin (GAB) may be suitable for the storage of greenhouse gases. These same formations contain methane and naturally generated carbon dioxide that has been trapped for millions of years. The Queensland government has released exploration permits for Greenhouse Gas Storage in the Bowen and Surat basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are no hydrochemical studies of such deeper aquifers in the prospective storage areas. Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ), Queensland Department of Mines and Energy, worked collaboratively under the National Geoscience Agreement (NGA) to characterise the regional hydrochemistry of the Denison Trough and Surat Basin and trialled different groundwater monitoring strategies. The output from this Project constitutes part of a regional baseline reference set for future site-specific and semi-regional monitoring and verification programmes conducted by geological storage proponents. The dataset provides a reference of hydrochemistry for future competing resource users.

  • Workshop Proceedings of the National Coastal Groundwater Management Knowledge Transfer Workshop held in Canberra on 28-29 May 2013

  • Islands in the Pacific region rely heavily on their fresh groundwater, and for a number of islands it is the only reliable source of freshwater throughout the year. Stresses on groundwater resources in many Pacific Island countries are set to escalate in the future with projected population and economic growth. In addition, there are likely to be future climate impacts on groundwater availability and quality. Although a number of studies have been undertaken at a local scale, very limited information is available to consider the impacts of future climates on groundwater systems at a regional scale. This project provides a first-pass regional-scale assessment of the relative potential vulnerability of groundwater to: (i) low rainfall periods and (ii) mean sea-level rise for 15 Pacific Island countries and territories. The dataset associated with this report can be obtained from www.ga.gov.au using title "Pacific Island Groundwater Vulnerability to Future Climates Dataset" or catalogue number 81575.

  • Modelled groundwater levels from 2010 to 2070 used to estimate the impact of climate change and future groundwater resource development on groundwater levels in the GAB. The modelling considered different scenarios of climate and groundwater development: Scenario A (historical climate and current development); Scenario C (future climate and current development) and Scenario D (future climate and future development). This data set contains spatial data that were created from the outputs from the "A scenario" model and the "Base scenario" model, both of which were based on the GABtran groundwater flow model. The raster grid "A.grd" represents the spatial distribution of predicted hydraulic head for the year 2070 produced by the "A scenario" model. The raster grid "Base.grd" represents the modelled hydraulic head for the year 2010. The raster grid "A-Base.grd" represents the difference in predicted head from 2010 to 2070. 'No data' value is 1e30 Cell size is 5000m x 5000m This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. For more information, please refer to Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012), "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.

  • Modelled groundwater levels from 2010 to 2070 used to estimate the impact of climate change and future groundwater resource development on groundwater levels in the GAB. The modelling considered different scenarios of climate and groundwater development: Scenario A (historical climate and current development); Scenario C (future climate and current development) and Scenario D (future climate and future development). The future climate scenarios included the wet extreme (wet), the median (mid) and the dry extreme (dry). The raster grids "Cdry.grd"", "Cmid.grd" and "Cwet.grd" show predicted hydraulic head for the year 2070 based on projections of future climate and the continuation of current rates of groundwater extraction The files "Cdry-Base.grd", "Cmid-Base.grd" and ""Cwet-Base.grd" represent predicted differences between the hydraulic heads produced by Scenario C at 2070, and the modelled spatial distributions of hydraulic head for the year 2010 (Base scenario). The files "Cdry-A.grd", "Cmid-A.grd" and "Cwet-A.grd" represent predicted differences between hydraulic heads for 2070 produced by Scenario C and the current climate and development scenario (Scenario A). 'No data' value is 1e30 Cell size is 5000m x 5000m This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. For more information, please refer to Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012), "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.

  • Modelled groundwater levels from 2010 to 2070 used to estimate the impact of climate change and future groundwater resource development on groundwater levels in the GAB. The modelling considered different scenarios of climate and groundwater development: Scenario A (historical climate and current development); Scenario C (future climate and current development) and Scenario D (future climate and future development). The future climate scenarios included the wet extreme (wet), the median (mid) and the dry extreme (dry). The raster grids "Ddry.grd", "Dmid.grd" and "Dwet.grd" show predicted hydraulic head for the year 2070 based on projections of future climate and future development. The grids "Ddry-Base.grd", "Dmid-Base.grd" and "Dwet-Base.grd" represent predicted differences between the hydraulic heads produced by Scenario D at 2070, and the modelled spatial distributions of hydraulic head for the year 2010 (Base scenario). The grid "Dmid-Cmid.grd" represents the difference between the 2070 spatial distributions of hydraulic head that were produced by Scenario D (mid) and Scenario C (mid) 'No data' value is 1e30 Cell size is 5000m x 5000m This data and metadata were produced by CSIRO for the Great Artesian Basin Water Resource Assessment. For more information, please refer to Welsh WD, Moore CR, Turnadge CJ, Smith AJ and Barr TM (2012) "Modelling of climate and groundwater development. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment ". CSIRO Water for a Healthy Country Flagship, Australia. Projection is Albers equal area conic, with central meridian 143 degrees longitude, standard parallels at -21 and -29 degrees latitude and latitude of projection's origin at -25.