From 1 - 10 / 21
  • The National Geochemical Survey of Australia (<a href="http://www.ga.gov.au/ngsa" title="NGSA website" target="_blank">NGSA</a>) is Australia’s only internally consistent, continental-scale <a href="http://dx.doi.org/10.11636/Record.2011.020" title="NGSA geochemical atlas and dataset" target="_blank">geochemical atlas and dataset</a>. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Darling-Curnamona-Delamerian (<a href="https://www.ga.gov.au/eftf/projects/darling-curnamona-delamerian" title="DCD website" target="_blank">DCD</a>) region of southeastern Australia for the first partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (<a href="https://www.ga.gov.au/eftf" title="EFTF website" target="_blank">EFTF</a>) program. The selected 223 NGSA sediment samples fall within the DCD polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity >2.9 g/cm<sup>3</sup>) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified over 140 different HMs in the DCD area. The dataset, consisting of over 29 million individual mineral grains identified, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis tool (<a href="https://geoscienceaustralia.shinyapps.io/mna4hm/" title="MNA website" target="_blank">MNA</a>) built on a cloud-based platform. Accompanying this report are a data file of TIMA results and a mineralogy vocabulary file. When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.

  • Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no national-scale maps of regolith mineralogy are available in Australia. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a feasibility study in a selected pilot area for such a national regolith mineralogy database and atlas. The area chosen for this study is within the Darling-Curnamona-Delamerian (DCD) region of southeastern Australia. The DCD region was selected as a ‘deep-dive’ data acquisition and analysis by the Exploration for the Future (2020-2024) federal government initiative managed at Geoscience Australia. One hundred NGSA sites from the DCD region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both ‘major’ and clay minerals of the bulk sample. The identified mineral phases were quartz, plagioclase, K-feldspar, calcite, dolomite, gypsum, halite, hematite, goethite, rutile, zeolite, amphibole, talc, kaolinite, illite (including muscovite and biotite), palygorskite (including interstratified illite-smectite and vermiculite), smectite (including interstratified illite-smectite), vermiculite, and chlorite. Poorly diffracting material (PDM) was also quantified and reported as ‘amorphous’. Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 wt% (weight percent) was achieved, with any mineral detection below that threshold reported as ‘trace’. Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are presented in Appendix A of this report and are downloadable as a .csv file. Mineral abundance or presence/absence maps are shown in Appendices B and C to document regional mineralogical patterns.

  • A seamless Regolith Map of Australia drawn from field-defined regolith-landform data at approx 1:250k scale for QLD and NT, and additionally from SA regolith data derived from the South Australian Regolith Map (1:2 Million) published in 2012, and generalised by Geoscience Australia to 1:5 000 000 for matching with existing data.

  • The results of a pilot study into the application of an unsupervised clustering approach to the analysis of catchment-based National Geochemical Survey of Australia (NGSA) geochemical data combined with geophysical and geological data across northern Australia are documented. NGSA Mobile Metal Ion® (MMI) element concentrations and first and second order statistical summaries across catchments of geophysical data and geological data are integrated and analysed using Self-Organising Maps (SOM). Input features that contribute significantly to the separation of catchment clusters are objectively identified and assessed. A case study of the application of SOM for assessing the spatial relationships between Au mines and mineral occurrences in catchment clusters is presented. Catchments with high mean Au code-vector concentrations are found downstream of areas known to host Au mineralisation. This knowledge is used to identify upstream catchments exhibiting geophysical and geological features that indicate likely Au mineralisation. The approach documented here suggests that catchment-based geochemical data and summaries of geophysical and geological data can be combined to highlight areas that potentially host previously unrecognised Au mineralisation. <b>Citation:</b> M. J. Cracknell, P. de Caritat; Catchment-based gold prospectivity analysis combining geochemical, geophysical and geological data across northern Australia. <i>Geochemistry: Exploration, Environment</i>, Analysis 2017; 17 (3): 204–216. doi: https://doi.org/10.1144/geochem2016-012 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)

  • The regolith landform maps are drawn at various scales and illustrate the distribution of regolith materials and the landforms on which they occur. Regolith landforms are described using the regolith terrain mapping (RTMAP) scheme developed at Geoscience Australia or the Residual-Erosional-Depositional (RED) mapping scheme developed by the CSIRO Division of Exploration and Mining.

  • Satellite imagery provides useful data for mapping the characteristics of exposed rock and soil. However, these materials in many environments are masked by vegetation. To address this the Sentinel-2 Barest Earth thematic product provides a national scale mosaic of the Australian continent with significantly reduced influence of seasonal vegetation cover to support enhanced mapping of soil and geology. The barest earth algorithm, operating on all available Sentinel-2 A and Sentinel-2 B observations up to September 2020, preferentially weights bare ground exposure through time to more directly map the surface mineralogy and geochemistry of soil and rock. The algorithm uses a high-dimensional weighted geometric median approach that maintains the spectral relationships across all Sentinel-2 bands building on a similar approach applied to the deeper Landsat time series archive. Both barest earth products have spectral bands in the visible near infrared and shortwave infrared region of the electromagnetic spectrum. However, the main visible and near-infrared Sentinel-2 bands have a spatial resolution of 10 meters compared to 30m for the Landsat TM equivalents. Furthermore, although the first Sentinel-2 satellite was launched in 2015 the twin orbiting satellite configuration provides shorter revisit times that increase the frequency of observations and probability of observing barer pixels amongst observations obscured by clouds and shadows. The Sentinel-2 satellite has broad application in environmental and geological sciences. The barest earth approach generates a complimentary set of spectral bands with reduced vegetation influence for more directed geological applications. We discuss the barest earth algorithm and compare non-bare and barest earth Sentinel-2 imagery. A series of enhance Sentinel-2 images are used to illustrate the potential of the barest earth datasets for mapping soil and bedrock and we summarise key band ratios that can be used as proxies for mapping surface mineralogy including iron oxides and hydroxyl minerals.

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • Australia has a significant number of surface sediment geochemical surveys that have been undertaken by industry and government over the past 50 years. These surveys represent a vast investment and have up to now only been able to be used in isolation, independently from one another. The key to maximising the full potential of these data and the information they provide for mineral exploration, environmental management and agricultural purposes is using all the surveys together, seamlessly. These disparate geochemical surveys not only sampled various landscape elements and analysed a range of size fractions, but also used multiple analytical techniques, instrument types and laboratories. The geochemical data from these surveys require levelling to eliminate, as much as possible, non-geological variation. Using a variety of methodologies, including reanalysis of both international standards and small subsets of samples from previous surveys, we have created a seamless surface geochemical map for northern Australia, from nine surveys with 15,605 samples. We tested our approach using two surveys from the southern Thomson Orogen, which demonstrated the successful removal of inter-laboratory and other analytical variation. Creation of the new combined and levelled northern Australian dataset paves the way for the application of statistical and data analytics techniques, such as principal component analysis and machine learning, thereby maximising the value of these legacy data holdings. The methodology documented here can be applied to additional geochemical datasets as they become available.

  • During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents. <b>Citation:</b> P. de Caritat, C. Reimann, D.B. Smith, X. Wang, Chemical elements in the environment: Multi-element geochemical datasets from continental- to national-scale surveys on four continents, <i>Applied Geochemistry</i>, Volume 89, 2018, Pages 150-159, ISSN 0883-2927, https://doi.org/10.1016/j.apgeochem.2017.11.010

  • The National Geochemical Survey of Australia (NGSA) provides an internally consistent, state-of-the-art, continental-scale geochemical dataset that can be used to assess areas of Australia more elevated in commodity metals and/or pathfinder elements than others. But do regions elevated in such elements correspond to known mineralized provinces, and what is the best method for detecting and thus potentially predicting those? Here, using base metal associations as an example, I compare a trivariate rank-based index and a multivariate-based Principal Component Analysis method. The analysis suggests that the simpler rank-based index better discriminates catchments endowed with known base metal mineralization from barren ones and could be used as a first-pass prospectivity tool. <b>Citation:</b> Patrice de Caritat, Continental-scale geochemical surveys and mineral prospectivity: Comparison of a trivariate and a multivariate approach, <i>Journal of Geochemical Exploration</i>, Volume 188, 2018, Pages 87-94, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2018.01.014