Basin
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This McArthur Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The McArthur Basin, located in the north-east of the Northern Territory, is a Paleoproterozoic to Mesoproterozoic geological formation containing relatively undisturbed siliclastic and carbonate rocks, as well as minor volcanic and intrusive rocks. These sediments were primarily deposited in shallow marine environments, with some lacustrine and fluvial influences. The basin's thickness is estimated to be around 10,000 m to 12,000 m, potentially reaching 15,000 m in certain areas. It is known for hosting elements of at least two Proterozoic petroleum systems, making it a target for petroleum exploration, especially in the Beetaloo Sub-basin. Researchers have divided the McArthur Basin into five depositional packages based on similarities in age, lithofacies composition, stratigraphic position, and basin-fill geometry. These packages, listed from oldest to youngest, are the Wilton, Favenc, Glyde, Goyder, and Redback packages. The McArthur Basin is part of the broader Proterozoic basin system on the North Australian Craton, bounded by various inliers and extending under sedimentary cover in areas like the Arafura, Georgina, and Carpentaria basins. It is divided into northern and southern sections by the Urapunga Fault Zone, with significant structural features being the Walker Fault Zone in the north and the Batten Fault Zone in the south. The basin's southeastern extension connects with the Isa Superbasin in Queensland, forming the world's largest lead-zinc province. Overall, the McArthur Basin is an essential geological formation with potential petroleum resources, and its division into distinct packages helps in understanding its complex stratigraphy and geological history. Additionally, its connection with other basins contributes to a broader understanding of the region's geological evolution and resource potential.
-
This Karumba Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Karumba Basin is a shallow geological basin in Queensland, Australia, composed of sedimentary rocks and unconsolidated sediments that cover the Mesozoic Carpentaria Basin. Deposition started during the Late Cretaceous to Early Paleocene and has continued into the Holocene. The basin extends from western Cape York Peninsula into the Gulf of Carpentaria, where it connects with Cenozoic sediment deposits in Papua New Guinea. Although the sediments in both areas share lithostratigraphic and biostratigraphic similarities, their tectonic histories differ. The basin's structural geology is relatively uniform, with a significant downwarp known as the Gilbert-Mitchell Trough in Cape York Peninsula and another depocenter offshore in the Gulf of Carpentaria. The depositional history and stratigraphy of the Karumba Basin can be divided into three cycles of deposition, erosion, weathering, and the formation of stratigraphic units. The earliest cycle (the Bulimba Cycle) began in the Late Cretaceous to Early Paleocene, with episodes of significant uplift along the eastern margins of the basin. This resulted in the deposition of the Bulimba Formation and the Weipa Beds, primarily consisting of claystone, sandstone, conglomerate, and siltstone with minor coal layers. This cycle was followed by a period of planation and deep weathering, creating the Aurukun Surface. The second cycle (the Wyaaba Cycle) was initiated by large-scale earth movements along the Great Dividing Ranges, forming much of the eastern boundary of the Karumba Basin, and leading to the formation of the Wyaaba beds and other equivalent units. These beds consist mainly of fluvial to paralic clay-rich sandstone, conglomerate, siltstone, and claystone. In the south-west, Oligocene to Pliocene limestone deposits also formed in lacustrine settings, and were sourced from and deposited upon the underlying Georgina Basin. The cycle ended with ensuing periods of erosion and weathering and the development of the Pliocene Kendall Surface, as well as widespread basaltic volcanism. The final cycle (the Claraville Cycle) started in the Pliocene and continues to the present. It has experienced several episodes of uplift and deposition controlled by sea level change, climate variability and volcanism in the south. The Claraville beds are unconsolidated sediments, chiefly comprised of clayey quartzose sand and mud with minor gravels, reaching approximately 148 m thickness offshore, and approximately 70 m onshore. As this cycle is still ongoing, no terminal surface has been formed, and most units consist of unconsolidated surficial sediments.
-
The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Carpentaria region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.
-
This Daly Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Daly Basin is a geological formation consisting of Cambrian to Ordovician carbonate and siliciclastic rocks, formed approximately 541 million to 470 million years ago. The basin stretches about 170 km in length and 30 km in width, shaped as a northwest elongated synform with gentle dips of less than 1 degree, likely due to prolonged sedimentary deposition in the shallow seas of the Centralian Superbasin, possibly along basin-scale faults. The primary groundwater reservoir within the Daly Basin is found in the Cambrian Daly River Group. This group comprises three units: the Tindall Limestone, Jinduckin Formation, and Oolloo Dolostone. The Tindall Limestone, which lies at the base, consists of grey, mottled limestone with some maroon-green siltstone or dark grey mudstone. The transition from the Tindall Limestone to the overlying Jinduckin Formation is marked by a shift from limestone to more siliciclastic rocks, indicating a change from open-shelf marine to peri-tidal environments. The Jinduckin Formation, situated above the Tindall Limestone, is composed of maroon-green dolomitic-siliciclastic siltstone with interbeds of dolomitic sandstone-siltstone, as well as dolostone and dolomitic quartz sandstone lenses. It gradually transitions into the carbonate-rich Oolloo Dolostone, with the highest finely laminated dolomitic sandstone-siltstone interbeds at the top of the Jinduckin Formation. The Oolloo Dolostone, the uppermost unit of the Daly River Group, comprises two members: the well-bedded lower Briggs Member, consisting of fine- to medium-grained crystalline dolostone and dolomitic quartz sandstone, and the massive upper King Member. Overlying the Daly River Group is the Ordovician Florina Formation, consisting of three carbonate intervals separated by two fine-grained, glauconite-bearing quartz sandstone units. The Florina Formation and the Daly River Group are covered unconformably by Cretaceous claystone and sandstone of the Carpentaria Basin, which extends over a significant portion of the Daly Basin.
-
The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The Petrel Sub-basin CO2 Storage Study data package includes the datasets used for the study located in the Petrel Sub-basin, Bonaparte Basin, offshore Northern Territory. The datasets supports the results of the Geoscience Australia Record 2014/11 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Petrel Sub-basin and was part of the Australian government's National Low Emission Coal Initiative.
-
This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This South Nicholson Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The South Nicholson Basin is a Mesoproterozoic sedimentary basin spanning Queensland and the Northern Territory and is bordered by neighbouring provinces and basins. The basin unconformably overlies the Lawn Hill Platform of the Mount Isa Province to the east, is bound by the Warramunga and Davenport provinces to the south-west, the Murphy Province to the north and the McArthur Basin to the north-west. It extends southwards under younger cover sequences. Rock units in the basin are correlated with the Roper Group in the McArthur Basin, forming the 'Roper Superbasin.' The underlying Mount Isa Province contains potential shale gas resources. The basin mainly consists of sandstone- and siltstone-bearing units, including the South Nicholson Group, with a prevailing east to east-northeast structural grain. Mild deformation includes shallowly plunging fold axes and numerous faults along a north-west to south-east shortening direction. Major geological events affecting the South Nicholson Basin region include the formation of the Murphy Province's metamorphic and igneous rocks around 1850 million years ago (Ma). The Mount Isa Province experienced deposition in the Leichhardt Superbasin (1800 to 1750 Ma) and Calvert Superbasin (1725 to 1690 Ma). The Isa Superbasin, with extensional growth faulting in the Carrara Sub-basin (~1640 Ma), deposited sediments from approximately 1670 to 1590 Ma. Subsequently, the South Nicholson Group was deposited around 1500 to 1430 Ma, followed by the Georgina Basin's sedimentation. The basin shows potential for sandstone-type uranium, base metals, iron ore, and petroleum resources, while unconventional shale and tight gas resources remain largely unexplored. The Constance Sandstone holds promise as a petroleum reservoir, and the Mullera Formation and Crow Formation serve as potential seals.
-
This Otway Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Otway Basin is an elongated sedimentary basin located on the south-east continental margin of Australia. Covering approximately 150,000 square kilometres and stretching about 500 km from South Australia's Cape Jaffa to Victoria's Port Phillip Bay and Tasmania's north-west, most of the basin is offshore, with a smaller portion onshore. Geological studies of the Otway Basin have primarily focused on its hydrocarbon prospectivity, examining thick Cretaceous aged rocks both onshore and offshore. However, the shallower onshore sedimentary units are more relevant from a groundwater perspective. The basin's formation began with rifting between the Australian and Antarctic plates during the Late Jurassic, leading to regional subsidence and the development of the elongated sedimentary basin. Following the Cretaceous plate breakup, a passive margin basin formed, which subsequently underwent basin inversion, reverse faulting, and folding, interspersed with extensional periods and normal faulting. This complex evolution, combined with sea level variations and volcanic activity, resulted in numerous sedimentary cycles. The sedimentary succession in the basin comprises non-marine sediments and volcanic rocks from the Jurassic and early Cretaceous, with a period of tectonic compression interrupting sedimentation during the mid-Cretaceous. The late Cretaceous and Cenozoic sedimentary and volcanic rocks form the primary groundwater-bearing aquifers of the basin, with various sedimentary environments developing in the Neogene and Quaternary. The basin's structural geology is intricate, with numerous basement highs, sub-basins, troughs, and embayments. Fault systems are prevalent, separating tectonic blocks and potentially influencing groundwater flow, offering conduits for inter-aquifer connectivity. Overall, the Otway Basin's geological history has shaped its hydrocarbon potential and groundwater resources, making it an essential area for ongoing research and exploration in Australia's geological landscape.
-
This Western Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The geological evolution of Australia can be summarised as a west-to-east growth pattern, resulting from the assembly and disintegration of several supercontinents since the Archean era. The oldest rocks are found in Western Australia, specifically within the Western Australia fractured rock province, which consists of two crustal elements: the West Australian Element and the Pinjarra Element. The Yilgarn and Pilbara cratons in the West Australian Element host the oldest rocks in continental Australia, featuring high-grade gneiss belts, granite-greenstone belts, and significant gold and iron ore deposits. The Yilgarn Craton is older in the west and can be divided into several terranes, with the eastern regions hosting world-class gold deposits. The Pilbara Craton, on the other hand, consists of granitoid-greenstone terrain and is rich in banded iron formations, leading to the world's richest iron ore deposits in the Hamersley Basin. The Gascoyne Province forms the medium- to high-grade metamorphic core of the orogeny in the West Australian Element. The Albany-Fraser Orogen and Paterson Orogen joined the West Australian Element with the South Australian and North Australian Elements, respectively, and are characterised by metamorphosed rocks of various facies. The Pinjarra Orogen, situated to the west of the Yilgarn-Pilbara block, contains granulite and amphibolite facies orthogneisses. In the Phanerozoic era, sedimentary cover occurred in various large and smaller basins in Western Australia. The West Australian Element, along with the adjoining orogens, is treated as the West Australian fractured rock province, primarily reliant on weathered and fractured zones for groundwater storage due to low permeability. These cratons and orogens have been exposed since the Precambrian or Late Palaeozoic era, experiencing substantial weathering and river valley development. Modern palaeovalleys are mainly infilled with Cenozoic sediments, while arid conditions have reduced active watercourses, leading to an abundance of Aeolian sand cover. Many of these palaeovalleys are no longer active as rivers but can still be identified topographically. Overall, the geological history of Australia reveals a complex and diverse landscape, with Western Australia playing a significant role in hosting some of the continent's oldest rocks and valuable mineral deposits.
-
This Carnarvon Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carnarvon Basin is a large sedimentary basin covering the western and north-western coast of Western Australia, stretching over 1,000 km from Geraldton to Karratha. It is predominantly offshore, with over 80% of the basin located in water depths of up to 4,500 m. The basin is elongated north to south and connects to the Perth Basin in the south and the offshore Canning Basin in the north-east. It is underlain by Precambrian crystalline basement rocks. The Carnarvon Basin consists of two distinct parts. The southern portion comprises onshore sub-basins with mainly Paleozoic sedimentary rocks extending up to 300 km inland, while the northern section consists of offshore sub-basins containing Mesozoic, Cenozoic, and Paleozoic sequences. The geological evolution of the Southern Carnarvon Basin was shaped by multiple extensional episodes related to the breakup of Gondwana and reactivation of Archean and Proterozoic structures. The collision between Australia and Eurasia in the Mid-Miocene caused significant fault reactivation and inversion. The onshore region experienced arid conditions, leading to the formation of calcrete, followed by alluvial and eolian deposition and continued calcareous deposition offshore. The Northern Carnarvon Basin contains up to 15,000 m of sedimentary infill, primarily composed of siliciclastic deltaic to marine sediments from the Triassic to Early Cretaceous and shelf carbonates from the Mid-Cretaceous to Cenozoic. The basin is a significant hydrocarbon province, with most of the resources found within Upper Triassic, Jurassic, and Lower Cretaceous sandstone reservoirs. The basin's development occurred during four successive periods of extension and thermal subsidence, resulting in the formation of various sub-basins and structural highs. Overall, the Carnarvon Basin is a geologically complex region with a rich sedimentary history and significant hydrocarbon resources. Exploration drilling has been ongoing since 1953, with numerous wells drilled to unlock its hydrocarbon potential.