From 1 - 10 / 11
  • <div>This data accompanies the Australian Operating Mines Map 2021 (twenty-second edition) March 2022. The Australian Operating Mines Map 2021 may be downloaded from the Geoscience Australia website at: https://pid.geoscience.gov.au/dataset/ga/146335</div>

  • The Mesoproterozoic South Nicholson Basin, straddling the NT and QLD border, sits between, and partly overlies, the Paleoproterozoic components of the Mount Isa Province to the east and the southern McArthur Basin to the northwest. While the McArthur Basin and Mount Isa Province are comparatively well studied and considered highly prospective for both mineral and energy resources, rocks of the South Nicholson region are mostly undercover and, as such, there is incomplete understanding of their geological evolution and resource potential. Geoscience Australia (in collaboration with the Northern Territory Geological Survey and the Geological Survey of Queensland, and co-funded by AuScope) undertook the South Nicholson Basin deep crustal seismic reflection survey (e.g. Carr et al., 2019). This survey was conducted under the federally funded Exploring for the Future (EFTF) initiative, a $100.4 million, four year program to evaluate the resource potential across all of northern Australia.

  • Australian Resource and Energy Infrastructure map is a national view of Australia's mineral resources and energy infrastructure, Base scale of 1:5,000,000.

  • This package contains presentations given during NT Resources week, at the Uncovering East Tennant workshop held in Darwin on September 3, 2019, and Mining the Territory, September 5, 2019. The presentation given by Andrew Heap at the Mining the Territory forum is a high level overview of the data collection and activities of GA and it's collaborative partners across Northern Australia in conjunction with the Exploring for the Future (EFTF) program. The workshop, held in collaboration with the Northern Territory Geological Survey, outlined new mineral exploration opportunities in the East Tennant area, which lies beneath the Barkly Tableland and extends approximately 250 km east of Tennant Creek. The East Tennant area has been the focus of geochemical, geological and geophysical data acquisition as part of Geoscience Australia's Exploring for the Future program. This free event showcased new science insights for the East Tennant area and how this under-explored region has opportunities for greenfield mineral discoveries.

  • Following the successful outcomes of the Tennant Creek-Mt Isa (TISA) mineral potential assessment (Murr et al., 2019; Skirrow et al., 2019), the methodology has been expanded to encompass the entire North Australian Craton (NAC). Like its predecessor, this assessment uses a knowledge-based, data-rich mineral systems approach to predict the potential for iron oxide-copper-gold (IOCG) mineralisation. With their high metal yield and large alteration footprint, IOCG mineral systems remain an attractive target in directing exploration efforts towards undercover regions. This mineral potential assessment uses a 2D GIS-based workflow to map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components, theoretical criteria representing important ore-forming processes were identified and translated into mappable proxies using a wide range of input datasets. Each of these criterion are weighted and combined using an established workflow to produce a models of IOCG potential. Metadata and selection rational are documented in the accompanying NAC IOCG Assessment Criteria Table. Two scenarios were modelled for this assessment. The first is a comprehensive assessment, targeting pre-Neoproterozoic mineral systems (>1500 Ma), using a combination of interpreted, geological and geophysical datasets. As geological interpretations are subjective to the geological knowledge of the interpreter, well-documented areas, such as shallow pre-Neoproterozoic basement, have a greater density of data. This increase in data density can create an inherent bias in the modelled result towards previously explored shallow terrains. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment, and observations are reflective of only the modern geological environment. Both assessments highlight existing mineral fields in WA, NT and QLD, and suggest that these regions extend under cover. Furthermore, regions not previously known for IOCG mineralisation display a high modelled potential, offering exploration prospects in previously unknown or discounted areas.

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • Water, energy and mineral resources are vital for Australia’s economic prosperity and sustainable development. However, continued supply of these resources cannot be taken for granted. It is widely accepted that the frontier of exploration now lies beneath the Earth’s surface, making characterisation of the subsurface a unifying challenge. Between 2016 and 2020, the $100.5 million Exploring for the Future program focused on addressing this challenge across northern Australia in order to better define resource potential and boost investment. The program applied a multiscale systems approach to resource assessment based on characterisation of the Australian plate from the surface down to its base, underpinned by methodological advances. The unprecedented scale and diversity of new data collected have resulted in many world-first achievements and breakthrough insights through integrated systems science. Through this multi-agency effort, new continental-scale datasets are emerging to further enhance Australia’s world-leading coverage. The program has identified prospective regions for a wide range of resources and pioneered approaches to exploration undercover that can be applied elsewhere. The outcomes so far include extensive tenement uptake for minerals and energy exploration in covered terranes, and development of informed land-management policy. Here, we summarise the key scientific achievements of the program by reviewing the main themes and interrelationships of 62 contributions, which together constitute the Exploring for the Future: extended abstracts volume. <b>Citation:</b> Czarnota, K., Roach, I.C., Abbott, S.T., Haynes, M.W., Kositcin, N., Ray, A. and Slatter, E., 2020. Exploring for the Future: advancing the search for groundwater, energy and mineral resources. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <p>Iron oxide-copper-gold (IOCG) mineral systems are a desirable undercover exploration target due to their large alteration footprint and potentially high metal content. To assist in understanding the potential for IOCG mineral systems beneath cover in the Tennant Creek to Mount Isa region as part of Exploring for the Future, a predictive mineral potential assessment has been undertaken using a knowledge-based, mineral systems approach.<p>This mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential, all of which is well documented in the accompanying IOCG Assessment Criteria Table.<p>Two assessments have been undertaken. The first is a comprehensive assessment containing all available geospatial information and is highly reliant on the level of geological knowledge. As such, it preferentially highlights mineral potential in well-understood areas, such as outcropping regions and performs less well in covered areas, where there is a greater likelihood of data gaps. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment.<p>Both assessment highlight new areas of interest in underexplored regions, of particular interest a SW-NE corridor to the East of Tennant Creek of moderate/high potential in the Barkly region. This corridor extends to an area of moderate potential in the Murphy Inlier region near the Gulf of Carpentaria on the NT/QLD border.

  • <div>Australia's Identified Mineral Resources is an annual national assessment that takes a long-term view of Australian mineral resources likely to be available for mining. The assessment also includes evaluations of long-term trends in mineral resources, world rankings, summaries of significant exploration results and brief reviews of mining industry developments.</div>