From 1 - 10 / 53
  • <div>The A1 poster incorporates 4 images of Australia taken from space by Earth observing satellites. The accompanying text briefly introduces sensors and the bands within the electromagnetic spectrum. The images include examples of both true and false colour and the diverse range of applications of satellite images such as tracking visible changes to the Earth’s surface like crop growth, bushfires, coastal changes and floods. Scientists, land and emergency managers use satellite images to analyse vegetation, surface water or human activities as well as evaluate natural&nbsp;hazards.</div>

  • Floods are Australia's most expensive natural hazard with the average annual cost of floods estimated at AUD$377 million (BITRE 2008). This figure is likely to have risen following the widespread and devastating floods across eastern Australia that occurred over the summer of 2010-11. The development of tools to support the identification and analysis of flood risk is an important first step in reducing the cost of floods in the community. The Australian Government through Geoscience Australia (GA) has been leading the development of tools which assist in flood intelligence, modelling and damage assessment. An overview of three of these tools will be provided in this presentation. Note: Rest of abstract is too long for space provided.

  • The satellite images below show the dramatic effect on the land of recent heavy rain, causing floodwaters to inundate south-west Queensland. This area is known as the Channel Country and has an extensive braided river system which includes the Georgina River, the Diamantina River and Cooper Creek. Excess water from this area generally feeds into the Lake Eyre system which is a vast drainage basin in Australia's arid interior. Flooding of the magnitude visible on the satellite images can cause Lake Eyre to fill up - something which occurs very rarely.

  • 11-5519 Metropolitan Manilla (Philippines). Philippine GIS data-sets should arrive from the source on the 15th of July, 2011. GAV will process the data, and produce a short movie. The movie will reveal the 17 town halls of the greater metro Manilla; and outline the fault line, as well as earthquake affected areas, flood affected areas and cyclone affected areas. This movie is for the Philippine Govt. via Ausaide, and will include photographs of Philippine nationals assisting in disaster reduction work. The aquired data-sets will be stored on the GA data store, where access can be gained through communication with Luke Peel - GEMD National Geographic Information Section, Geoscience australia.

  • The increasing availability of high-resolution digital elevation models (DEMs) is leading to improvements in flood analysis and predictions of surface-groundwater interaction in floodplain landscapes. To produce accurate predictions of flood inundation and calculations of flood volume, a 1m resolution LiDAR DEM was initially levelled to the Darling River floodplain by subtracting interpolated floodplain elevation trend surface from the DEM. This produces a de-trended flood-plain surface. Secondly, the levelled DEM surface was adjusted to the water-level reading at the Darling-River gauging station (Site 425012) at the time when the LiDAR was acquired. Flood extents were derived by elevation slicing of the adjusted levelled DEM up to any chosen river level. River-level readings from historical and current events utilised NSW Office of Water real-time river data. The flood-depth dataset is an inverted version of the flood-extent grid. Predicted flood depth and extent were classified by depth/elevation slice ranges of the adjusted de-trended DEM with 25 and 50 cm increments. In summary, the extent and depth of water inundation across the Darling floodplain have been predicted under different flooding scenarios, and validated using satellite data from historical (1990) and recent (2010/11) flood events. In all cases imagery and photo validation proved that predicted extents are accurate. The flood-risk predictions were then applied to a number of river-level scenarios. The flood risk predictions maps have been used as an input into developing recharge potential maps, and are being employed in flood-hazard assessments and infrastructure planning.

  • With the average annual cost of floods estimated at $377 million, floods are Australia's most expensive natural hazard. As a result, considerable expenditure is made by government and industry to define flood areas in an effort to reduce the impacts of floods. This work typically involves the creation of reports describing the methodology used, data sources and results of hydrological and hydraulic modelling and damage assessments. While numerous reports are developed each year, there was no centralised record of what studies had been undertaken in Australia at a state/territory or national level until the development of the Australian Flood Studies Database in 2004. In 2009 Geoscience Australia reviewed the Australian Floods Studies Database via an online questionnaire. Opinion of the database was sought in three key areas including database functionality and content, and updating the database. The respondents confirmed the usefulness of the existing database content including hydrology and hydraulic scenarios, historical flood events used in the calibration, terrain and floor level surveys, damage assessments, inundation and hazard scenarios, information on what has occurred since a study's completion and related studies. Recurring themes highlighted by the survey respondents include the ability to be able to access the flood study reports and GIS flood layers via the database and be able to input data. Over 170 people completed the survey; 90% of whom were from local government. While only 20% of respondents had used the database, 72% of all respondents to the survey indicated that they would use the database in the future, whether or not they had used the database in the past. Three main recommendations can be concluded from the survey responses. The first recommendation is that the Australian Flood Studies Database is updated and that the lead agency for floodplain management in each State/Territory be responsible for that update on at least an annual basis. The second recommendation is that the database's existing functionality and content is maintained and further enhanced. The final recommendation is that the database is further publicised.

  • The Australian Flood Risk Information Portal (the portal) is an initiative of the Australian Government, established following the devastating floods across Eastern Australia in 2011. The portal is a key component of the National Flood Risk Information Project (NFRIP), and aims to provide a single point of access to Australian flood information. Currently much of Australia's existing flood information is dispersed across disparate sources, making it difficult to find and access. The portal will host data and tools that allow public discovery, visualisation and retrieval of flood studies, flood maps, satellite derived water observations and other related information, all from a single location. The portal will host standards and guidelines for use by jurisdictions and information custodians to encourage best practice in the development of new flood risk information. While the portal will initially host existing flood information, the architecture has been designed to allow the portal content to grow over time to meet the needs of users. The aim is for the portal to display data for a range of scenarios from small to extreme events, though this will be dependent on stakeholder contributions. Geoscience Australia's Australian Flood Studies Database is the portal's data store of flood study information. The database includes metadata created through a purpose-built data entry application, and over time, information harvested from state-operated catalogues. For each entry the portal provides a summary of the flood study, including information on how the study was done, what data was used, what flood maps were produced and for what scenarios, as well as details on the custodian and originating author. If the study included an assessment of damage, details such as estimates of annual average damage, or the number of properties affected during a flood of a particular likelihood will also be included. During the last phase of development downloadable flood study reports and their associated flood maps have been added to the portal where available. As the portal is populated it will increasingly host mapped flood data, or link to flood data and maps held in authoritative databases hosted by State and Territory bodies. Mapping data to be made accessible through the portal will include flood extents and to a lesser degree information on water depths. The portal will also include water observations obtained from Geoscience Australia's historic archive of Landsat imagery. This data will show whether a particular location was 'wet' at some point during the past 30 years. While this imagery does not necessarily represent the peak of a flood or show water depth, the data will support the validation and verification process of hydrologic and hydraulic flood modelling. This work will prove useful particularly in rural areas where there is little or no flood information. The portal also provides flood information custodians with the ability to either upload mapped data directly to the portal or to make this data accessible via web services. Data management tools and standards, developed through NFRIP, will enable data custodians to map their data to agreed standards for delivery through the portal. A portal framework and supporting principles has been developed to guide the maintenance and development of the portal.

  • ACRES acquired SPOT 2 satellite images over the Namoi River, between the towns of Walgett and Wee Waa in December 1997 and November 2000. The November 2000 image consists of 12 scenes in which floodwaters, peaking at 8 metres, inundating the region are visible as green and light blue. Extensive flooding is evident. The December 1997 image shows the area of the Namoi River without floodwaters. The Namoi River catchment area is more than 350 kilometres long and stretches from Walcha in the east to Walgett in the west. Other river systems in the region include the Gwydir, Castlereagh, Hunter, Macquarie, Macleay, Manning, Culgoa and Condamine. You can find these rivers on Geoscience Australia's interactive Map of Australia.

  • Widespread flooding and associated damage in south-east Queensland during January and February, 2011 have demonstrated the importance of flood risk assessment. Flood risk assessment requires knowledge of the hazard, nature of properties exposed and their vulnerability to flood damage. Flood risk assessment can addresses different aspects of flood risk, i.e., hydrological, structural, economic and social aspects. This report presents the results of work undertaken by Geoscience Australia during 2011-2012 to further the understanding of the vulnerability of Australian buildings to inundation. The work consists of three parts: 1. Development of vulnerability curves for inundation, without velocity, of residential homes of the types encountered during surveys following the January, 2011 flooding in south-east Queensland. 2. Development of vulnerability curves for inundation, without velocity, of building types typical of the Alexandria Canal area of the inner south of Sydney. 3. Development of vulnerability curves for inundation with velocity (storm surge) of residential homes of the types encountered during surveys following TC Yasi, February, 2011.

  • In this study, various hydrochemical approaches were used to understand recharge processes in shallow (<120m) unconsolidated alluvial sediments in a 7,500 km2 area of the Darling River floodplain. Pore fluids were extracted from sediments from 60 sonic-cored bores, and together with surface and groundwater samples, provided a hydrochemical dataset with over 1600 samples and 25 analytes. Major ion chemistry highlights a mixing signature between river waters, the shallow unconfined aquifer and the underlying semi-confined Calivil Formation aquifer. These represent the fresh groundwater resources near the river and are Na-(Ca-Mg)-HCO3-Cl waters. Away from the influence of river leakage, the regional groundwater is more saline and sodic with an evolved Na-Cl-SO4 watertype. The mixing associated with river leakage is also supported by age dating. Stable isotope data show that recharge is episodic and linked to high-flow flood events rather than continuous river leakage, as demonstrated by hydrographic monitoring. The combination of surface water and groundwater sampling, the pore fluid analyses and fuzzy-k means (FCM) cluster analysis, provides a novel, relatively simple but powerful tool to assist with interpretation of groundwater processes. The FCM cluster analysis used analytes that were present in at least 60% of samples and resulted in samples being classified into eight classes (or hydrochemical facies). Pore fluids and groundwater with the greatest affinity to the surface water samples were easily identified. In this way, sites with significant active recharge, principally by river leakage, were mapped. Downhole plots of the pore fluid FCM classes provided additional insights into groundwater processes. Comparing the FCM classification of pore fluids within the target (semi)confined aquifer with those from the overlying clay aquitard and shallow aquifer allowed the assessment of vertical inter-aquifer leakage.