From 1 - 10 / 98
  • This special issue of Continental Shelf Research presents 13 research papers that contain the latest results in the field of benthic marine environment mapping and seabed characterisation. A total of 10 papers in this special issue were presented as papers and posters at GeoHab conferences in 2007 (Noumea, New Caledonia), 2008 (Sitka, Alaska) and 2009 (Trondheim, Norway). The annual GeoHab conference provides a forum in which marine physical and biological scientists, managers, policy makers, and industry representatives can convene to engage in discussions regarding mapping and characterising the seabed. The papers contained in this special issue build on the work published in Greene and Todd (2005): Mapping the Seafloor for Habitat Characterization, a special publication of the Geological Association of Canada.

  • Anthropogenic global ocean warming is predicted to cause bleaching of many near-sea-surface (NSS) coral reefs and could make deep-water, mesophotic coral ecosystems (MCEs) into coral reef 'life boats', for many coral species. The question arises: how common are MCE's in comparison to NSS reefs? We used a dataset from the Great Barrier Reef (GBR) to show that only about 37% of available bank surface area is colonised by NSS coral reefs (16,110 km2); the other 63% of submerged bank area (25,599 km2) represents potential MCE habitat and it is spatially distributed along the GBR continental shelf in direct proportion to NSS coral reefs. Out of 25,599 km2 of submerged bank area, predictive habitat modelling indicates that about 52% (13,000 km2) is MCE habitat.

  • This introductory chapter provides an overview of the book's contents and definitions of key concepts including benthic habitat, potential habitat and seafloor geomorphology. The chapter concludes with a summary of commonly used habitat mapping technologies. Benthic (seafloor) habitats are physically distinct areas of seabed that are associated with particular species, communities or assemblages that consistently occur together. Benthic habitat maps are spatial representations of physically distinct areas of seabed that are associated with particular groups of plants and animals. Habitat maps can illustrate the nature, distribution and extent of distinct physical environments present and importantly they can predict the distribution of the associated species and communities.

  • A range of physical descriptors of the seabed can potentially be used as surrogates for defining patterns of benthic marine biodiversity, including bathymetry, geomorphology and sediment type. These variables can be mapped, described and sampled across spatial scales that are of value to the management of the marine estate by providing a template for monitoring benthic ecosystems. As part of a four-year program (2007-2010) funded by the Australian Government, Geoscience Australia led marine surveys designed to collect robust datasets for the analysis of surrogacy relationships between a suite of physical variables and benthic biota in select areas of the Australian continental shelf. This paper focuses on results of the 2008 Carnarvon shelf survey, located within a Commonwealth Marine Park and adjacent to the World Heritage-listed Ningaloo Reef (Western Australia). High resolution multibeam sonar mapping, underwater video and benthic sampling revealed a complex geomorphology of ridges, mounds and sandy bedforms. The largest ridge extends 15 km alongshore is 20 m high and interpreted as a drowned forereef. Smaller ridges are ~1 km long, oriented northeast and preserve the form of aeolian dunes. Mounds are up to 5 m high and form extensive fields surrounded by flat sandy seabed. These ridges and mounds provide hardground habitat for diverse coral and sponge communities, whereas the surrounding sandy seafloor is characterised by few sessile benthic organisms. Multivariate analysis of these relationships is used to develop predictive models of benthic habitats, demonstrating the utility of high resolution physical data for informing management of these ecosystems.

  • Anthropogenic threats to benthic habitats do not pose an equal risk, nor are they uniformly distributed over the broad depth range of marine habitats. Deep sea benthic environments have, by and large, not been heavily exploited and most are in relatively good condition. In contrast, shelf and coastal habitats, and deep ocean pelagic fisheries, have been exploited extensively and human impacts here are locally severe. A critical point is that anthropogenic threats do not act in isolation; rather, they are cumulative and the impacts are compounded for every affected habitat. In general, the impacts of humans on benthic habitats is poorly understood. Habitat mapping provides condition assessments and establishes baselines against which changes can be measured. GeoHab scientists ranked the impacts on benthic habitats from fishing as the greatest threat, followed by pollution and litter, aggregate mining, oil and gas, coastal development, tourism, cables, shipping, invasive species, climate change and construction of wind farms. The majority of authors (84%) reported that monitoring changes in habitat condition over time was a planned or likely outcome of the work carried out. In this chapter the main anthropogenic threats to benthic habitats are reviewed in relation to their potential impacts on benthic environments.

  • The identification of marine habitats based on physical parameters is increasingly important for marine reserve design, allowing characterisation of habitat types over much wider areas than is possible from often patchy biological data. Marine management zones often contain a wide array of physical environments, which may not be captured in the biological sampling effort. The mismatch between biological and physical information leads to uncertainty in the application of bio-physical relationships at the broader management scale. In this study, a case study from northern Australia is used to demonstrate a methodology for defining uncertainties which result from the extrapolation of bio-physical associations across areas where detailed biological data is absent. In addition, uncertainties relating to the interpolation of physical data sets and that resulting from the cluster analysis applied to the physical data are calculated and mapped, providing marine managers with greater robustness in their analysis of habitat distributions.

  • Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS06-2008) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wave-generated currents. Sub-bottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other pre-existing bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. Sample/species matrix of infaunal taxa derived from Smith McIntyre grab samples taken on the Southern Surveyor cruise SS06/2008 to Lord Howe Island.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 81 sample dataset comprises acidextractable concentrations of trace elements (Fe, Mn, Co, Ni, Cu, Zn, Ge, As, Cd and Pb) in surface seabed sediments (~0 to 2 cm) from Jervis Bay.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 126 sample data set comprises TCO2 flux and pool data for surface seabed sediments (~0 to 2 cm).

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 110 sample data-set comprises salinity, dissolved oxygen, water temperature and light attenuation (KD) measurements from Jervis Bay.