From 1 - 10 / 139
  • The Australian Flood Studies Database is available on line by Geoscience Australia. The database provides metadata on Australian flood studies and information on flood risk with a digital version where available. The purpose of the document is to guide new users in data entry and uploading of flood studies to a level acceptable for inclusion in the database.

  • This document describes a structure for exchanging information to assist discovery and retrieval/transfer of flood information, including GIS flood mapping data. The draft class model represents metadata, data and summary information that supports the goals of the National Flood Risk Information Project (NFRIP) to improve the quality, consistency and accessibility of flood information. This document describes the data model that will be used to create an application schema.

  • In response to the catastrophic flooding in south east Queensland in early 2011 that caused between AUS$5-6 billion damage, the Australian Government initiated the National Disaster Review; an independent review into the insurance arrangements for individuals and businesses for damages and losses due to flood and other natural disasters. The review emphasised that consumers need to be aware of the risks they face, and highlighted the lack of consistency in the collection and provision of flood risk information. In response the Australian Government committed AUS$12 m over 4 years to the National Flood Risk Information Project (NFRIP). NFRIP was established to improve the quality, availability of accessibility of flood information across Australia and commenced in July 2012 with Geoscience Australia as the technical lead and Attorney Generals department taking the policy lead. The project comprises three core activities. 1) Development of the Australia Flood Risk Information Portal (AFRIP; www.ga.gov.au/afrip ), an online flood information portal that provides free access to authoritative flood study information and associated mapping from a central location. Centralising this information will make it easy for the public, engineering consultants, insurers, researchers and emergency managers to find out what flood information and mapping exists and where, and to better understand their risk. 2) Analysis of Geoscience Australia's historic archive of satellite imagery from 1987 to the present to provide an indication of how often surface water has been observed anywhere in Australia over the period of the archive. These Water Observations from Space (WOfS; www.ga.gov.au/wofs ) provide baseline information that can be used when no other flood information is available and an understanding of where surface water may impact assets and utility infrastructure. 3) Improving the quality of future flood information by completing the revision of the Australian Rainfall and Runoff guidelines (ARR; www.arr.org.au ). ARR is a series of national guidelines, methodologies and datasets fundamental for flood modelling that was updated in 1987 and modified 1997. The revised guidelines will provide flood professionals with information and data necessary to produce more accurate and consistent flood studies and mapping into the future. This presentation will provide a brief summary of the NFRIP objectives and progress to date, discuss some of the problems encountered in sourcing and making natural hazard and risk information public, and reflect on the broader challenges in the communication of risk to the wider community.

  • In 2009 Geoscience Australia (GA), Australia's national geoscience agency, initiated a project to update the National Earthquake Hazard Map for Australia. This talk will summarise the work done by the Earthquake Hazard Section to update the National Earthquake Hazard Maps and will also present the new maps themselves. The maps have mainly been designed to be used as a basis informing Australia's earthquake loading code. However they can also be used to help to improve Australia's ability to better prepare for earthquakes more generally. This talk will provide a brief overview of the work done for this project. Topics to be highlighted in this talk include how we put together a new catalogue of earthquakes for Australia and revised their magnitudes. Our new method for automatically classifying earthquakes as main shocks, foreshocks and aftershocks will also be discussed, as well the new set of earthquake source zones we have produced. In addition, the talk will also discuss new way we have tried to estimate the maximum expected magnitude for earthquakes in Australia from the results of GA's neotectonics program. The completely new set ground motion prediction equations for eastern Australia we have produced will also be presented. Finally, the talk will also show the revised and updated set of earthquake hazard maps based on the latest version of GA's EQRM (Earthquake Risk Model) code. The hazard and spectral curves for selected locations around Australia will be shown and the potential implications for earthquake risk will be briefly discussed. From the 9th International CO2 conference, Beijing 2013

  • Please note: The data can be downloaded for free in parts. Wind multipliers are factors that transform regional wind speeds to local wind speeds considering local effects of direction, terrain, shielding and topographic influences. In order to assess the local wind hazard (spatial significance in the order 10's of metres), wind multipliers need to be computed, so that the regional wind speeds (order 10 to 100's of kilometres) can be factored to provide local wind speeds. This data package includes terrain, shielding and topographic multipliers for national coverage. It is based on tiles with dimension about 1 by 1 decimal degree in netCDF format. Each multiplier further contains 8 directions. The version 2 dataset was produced using the wind multiplier computation software 2.0. See Geocat 82481.

  • Internal advice on tsunami, earthquake and severe wind hazards for the Kimbe Bay region, derived from large-scale hazard assessments. This advice (refer TRIM D2021-55557) was provided to the Australia Pacific Climate Partnership (APCP) as part of Geoscience Australia's (GA's) contributions to the program. (In confidence report to APCP, not for distribution)

  • Internal advice on tsunami, earthquake and severe wind hazards for the Kavieng Port region, derived from large-scale hazard assessments. This advice (refer TRIM D2021-55554) was provided to the Australia Pacific Climate Partnership (APCP) as part of Geoscience Australia's (GA's) contributions to the program. (In confidence report to APCP, not for distribution)

  • The Greater Metro Manila Area is one of the world's megacities and is home to about 12 million people. It is located in a region at risk from earthquakes, volcanic eruptions, tropical cyclones, riverine flooding, landslides and other natural hazards. Major flooding affected the Greater Metro Manila Area in September 2009 following the passage of Typhoon Ketsana (known locally as Typhoon Ondoy). Following this event, the Australian Aid Program supported Geoscience Australia to undertake a capacity building project with its partner agencies in the Government of the Philippines. The output of this project has been a series of risk information products developed by agencies in the Collective Strengthening of Community Awareness for Natural Disasters (CSCAND) group. These products quantify the expected physical damage and economic loss to buildings caused by earthquakes, tropical cyclone severe wind and riverine flooding across the Greater Metro Manila Area. Spatial data is a key input to the development of hazard models and information on exposure, or the 'elements at risk'. The development of a spatially enabled exposure database was a crucial element in the construction of risk information products for the Greater Metro Manila Area. The database provides one central repository to host consistent information about the location, size, type, age, residential population and structural characteristics of buildings within the area of interest. Unique spatial analysis techniques were employed to quantify and record important aspects of the built environment, for inclusion in the database. The process of exposure data development within the Greater Metro Manila Area, including a new application developed by Geoscience Australia for estimating the geometric characteristics of buildings from high resolution elevation data and multi-spectral imagery, will be presented.

  • A short film about a scientific project aimed at enhancing risk analysis capacities for flood, severe wind from tropical cyclones and earthquake in the Greater Metropolitan Manila Area. Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devastating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.

  • As part of the 2018 National Seismic Hazard Assessment (NSHA), we compiled the geographic information system (GIS) dataset to enable end-users to view and interrogate the NSHA18 outputs on a spatially enabled platform. It is intended to ensure the NSHA18 outputs are openly available, discoverable and accessible to both internal and external users. This geospatial product is derived from the dataset generated through the development of the NSHA18 and contains uniform probability hazard maps for a 10% and 2% chance of exceedance in 50 years. These maps are calculated for peak ground acceleration (PGA) and a range of response spectral periods, Sa(T), for T = 0.1, 0.2, 0.3, 0.5, 1.0, 2.0 and 4.0 s. Additionally, hazard curves for each ground-motion intensity measure as well as uniform hazard spectra at the nominated exceedance probabilities are calculated for key localities.