From 1 - 10 / 123
  • This double-sided A4 flyer promotes EFTF chronostratigraphic work in the NT, as well as the EFTF newsletter

  • Promotional Video designed to highlight the appeal of the Geological TimeWalk and attract visitors to Geoscience Australia, featuring GA Chief Scientist Dr. Steve Hill.

  • Geoscience Australia’s Exploring for the Future (EFTF) program has established new techniques to collect onshore pre-competitive datasets on an unprecedented scale. The Exploration Incentive Scheme (EIS) is a Western Australian Government initiative that aims to encourage exploration for the long-term sustainability of the state’s resources sector. Integration of EFTF and EIS datasets has improved understanding of the geology across northern Australia, and the associated energy, mineral and groundwater resources potential. The onshore Canning Basin covers approximately 530 000 km2, and has proven prospectivity for conventional oil and gas, mainly in the northern part of the basin. Potential exists for unconventional resources that remain largely unexplored and untested. Gas resource assessments suggest that the basin has significant potential for recoverable shale gas and tight gas. Even with exploration continuing along the flanks of the Fitzroy Trough, the Canning Basin remains one of the least explored Paleozoic basins in the world (DMIRS, 2020). Australia’s longest onshore seismic line, 18GA-KB1, acquired in the southern Canning Basin addresses a long standing data gap across the Kidson Sub-basin and Waukarlycarly Embayment that assists with the resource evaluation of this frontier region. The Kidson Sub-basin covers 91 000 km2 and has a sag basin architecture. Preliminary interpretation of the seismic data indicates that the sedimentary basin is approximately 6 km deep, and includes a conformable package of Ordovician–Devonian siliciclastic, carbonate and evaporite facies of exploration interest. The Carboniferous succession is interpreted as not being present. Located on the western end of the seismic line, the newly drilled deep stratigraphic well Waukarlycarly 1 penetrated 2680.53 m of Cenozoic and Paleozoic strata and provides stratigraphic control for the geology imaged in the Waukarlycarly Embayment. A comprehensive elemental and δ13C isotope chemostratigraphy study assists with stratigraphic correlations within Ordovician sedimentary strata across the region (Forbes et al., 2020a, b). Oil and gas discoveries throughout the Canning Basin were generated from Paleozoic marine source rocks, deposited under stratified oxic and euxinic water columns. Three distinct petroleum systems, the Ordovician (Larapintine 2), Late Devonian (Larapintine 3) and latest Devonian–early Carboniferous (Larapintine 4), are recognized based on the geochemical character of their associated fluids and each display strong stratigraphic control (Carr et al., 2020). Widespread generation of gas from Paleozoic sources is evident from molecular analyses of gases recovered from petroleum wells and fluid inclusions (Boreham et al., 2020). Currently the Larapintine 2 Petroleum System is deemed most prospective system in the Kidson Sub-basin.

  • Exploring for the Future (EFTF) is an ongoing multiyear initiative by the Australian Government, conducted by Geoscience Australia, in partnership with state and Northern Territory government agencies and other partner research institutes. The first phase of the EFTF program (2016-2020) aimed to improve Australia’s desirability for industry investment in resource exploration in frontier or ‘greenfield’ regions across northern Australia. As part of the program, Geoscience Australia employed a range of both established and innovative techniques to gather new precompetitive data and information to develop new insight into the energy, mineral and groundwater resource potential across northern Australia. To maximise impact and to stimulate industry exploration activity, Geoscience Australia focussed activities in greenfield areas where understanding of resource potential was limited. In order to address this overarching objective under the EFTF program, Geoscience Australia led acquisition of two deep crustal reflection seismic surveys in the South Nicholson region, an understudied area of little previous seismic data, straddling north-eastern Northern Territory and north-western Queensland. The first survey, L210 South Nicholson 2D Deep Crustal Seismic Survey acquired in 2017, consisted of five overlapping seismic lines (17GA-SN1 to SN5), totalling ~1100 line-km. Survey L210 linked directly into legacy Geoscience Australia seismic lines (06GA-M1 and 06GA-M2) in the vicinity of the world-class Pb-Zn Century Mine in Queensland. The results from survey L210 profoundly revised our geological understanding of the South Nicholson region, and led to the key discovery of an extensive sag basin, the Carrara Sub-basin, containing highly prospective late Paleoproterozoic to Mesoproterozoic rocks with strong affinities with the adjacent Mount Isa Province and Lawn Hill Platform. To complement and expand on the outstanding success of the South Nicholson survey and to continue to explore the resource potential across the underexplored and mostly undercover South Nicholson and Barkly regions, a second seismic survey was acquired in late 2019, the Barkly 2D reflection survey (L212). The Barkly seismic survey comprises five intersecting lines (19GA-B1 to B5), totalling ~813 line-km, extending from the NT-QLD border in the south-east, near Camooweal, to the highly prospective Beetaloo Sub-basin in the north-west. The survey ties into the South Nicholson survey (L210), the recently acquired Camooweal 2D reflection seismic survey by the Geological Survey of Queensland and industry 2D seismic in the Beetaloo Sub-basin, leveraging on and maximising the scientific value and impact on all surveys. The Barkly reflection seismic data images the south-western margin of the Carrara Sub-basin and identified additional previously unrecognised, structurally-disrupted basins of Proterozoic strata, bounded by broadly northeast trending basement highs. Critically, the survey demonstrates the stratigraphic continuity of highly prospective Proterozoic strata from the Beetaloo Sub-basin into these newly discovered, but as yet unevaluated, concealed basins and into the Carrara Sub-basin, further attesting to the regions outstanding potential for mineral and hydrocarbon resources. This survey, in concert with the South Nicholson seismic survey and other complementary EFTF funded regional geochemical, geochronology and geophysical data acquisition surveys, significantly improves our understanding of the geological evolution, basin architecture and the resource potential of this previously sparsely studied region.

  • Geoscience Australia commissioned ACIL Allen Consulting (ACIL Allen) to independently quantify the return on investment from six pre-competitive geoscience projects. These projects include three from the first phase of the $225 million Exploring for the Future (EFTF) program (2016-2024) and three pre-EFTF projects that were undertaken within the last two decades: the Mineral Potential Mapper Project (2012-2016), the Salt Lakes Study (2012-2014), and the Northeast Yilgarn Project (2001-2004). ACIL Allen has shown that the net benefits that have been estimated to flow as a result of Geoscience Australia’s spending on each of the projects are all positive, and in many cases, quite large. The return on investment analysis for the three EFTF case studies is published separately (https://pid.geoscience.gov.au/dataset/ga/132897) and the analysis of the three pre-EFTF case studies is available here in three standalone reports. An additional overview report synthesises the findings from all six case studies to assess the broader impact and value of pre-competitive geoscience projects. This synthesis includes projects undertaken by Geoscience Australia alone or in collaboration with state/territory geological surveys and other research organisations. ACIL Allen estimated that the net present value of benefits to Australia attributed to Geoscience Australia’s contribution to the three pre-EFTF projects are between $962 million and $2.4 billion, depending on the scenario considered. ACIL Allen also estimated that for every dollar invested by Geoscience Australia in these pre-EFTF projects, the Australian Government could gain a net benefit of at least $15 and potentially as much as $157. The analysis also shows that direct jobs associated with mining operations potentially arising from GA’s work on the six projects could number in the thousands. The ACIL Allen analysis also demonstrates that considerable time may elapse between the completion of a Geoscience Australia project and commencement of the mining of any resources that are identified. The three pre-EFTF projects examined suggest that it is around 10 years between the publication of Geoscience Australia’s results and the development of a mine. Therefore, If the development of any resources based on the findings of the EFTF projects follow similar timelines, then we could potentially expect to see new mines in operation sometime between 2026 and 2030.

  • The importance of critical minerals and the need to expand and diversify critical mineral supply chains has been endorsed by the Federal governments of Australia, Canada, and the United States. The geoscience organizations of Geoscience Australia, the Geological Survey of Canada and the U.S. Geological Survey have created the Critical Minerals Mapping Initiative to build a diversified critical minerals industry in Australia, Canada, and the United States by developing a better understanding of known critical mineral resources, determining geologic controls on critical mineral distribution for deposits currently producing byproducts, identifying new sources of supply through critical mineral potential mapping and quantitative mineral assessments, and promoting critical mineral discovery in all three countries.

  • Earthquake Environmental Effects (EEEs) identified in the source region of the 20th May 2016 intraplate moment magnitude (Mw) 6.1 Petermann earthquake in Central Australia are described and classified using the Environmental Seismic Intensity (ESI-07) scale. EEEs include surface rupture, ground fissures and cracks, vegetation damage, rockfalls, and displaced (jumped) bedrock fragments. The maximum ESI intensity derived from EEEs is X, consistent with previous observations from some moderate Mw crustal earthquakes. Maximum ESI isoseismals correlate with the location of the surface rupture rather than epicentre area due to the dipping geometry of the reverse source fault. ESI isoseismals encompass a larger area of the hanging-wall than the footwall, indicating stronger ground motions on the hanging-wall due to increased proximity to the rupture source and ground motion amplification effects. The maximum areal extent of secondary (seismic shaking-induced) EEEs (300 km2) is significantly smaller than expected using the published ESI-07 scale (approx. 5000 km2). This relates to the low topographic relief and relatively homogeneous bedrock geology of the study region, which (i) reduced the potential for site response amplification of strong ground motions, and (ii) reduced the susceptibility of the landscape to EEE such as landsliding and liquefaction. Erosional degradation of the observed EEE features and decreasing confidence with which they can be uniquely attributed to a seismic origin with increasing time since the earthquake highlight challenges in using many of the natural features observed herein to characterise the locations and attributes of paleo-earthquakes.

  • The Buddycurrawa Volcanics (BV, Benmara Group) are a sequence of trachyte lavas and interleaved shallow-marine siliciclastic rocks, exposed in the Benmara region, northwestern Mount Drummond 1:250 000 map sheet, Northern Territory. Previous information, including resource potential, on the BV was limited, and stratigraphic correlation with other regional volcanic units was speculative. Our new geochronology data establish the extrusion age of the BV as late Paleoproterozoic, constrained by a maximum age of ca. 1662 Ma (SHRIMP U-Pb zircon) and a minimum age of ca 1631 Ma (in situ laser Rb-Sr on glauconite within vesicles). The BV are, therefore, temporally equivalent to numerous ash fall tuffs reported throughout regional highly prospective late Paleoproterozoic successions. The BV also host vertical siliceous pipes, representing ‘white smokers’—peripheral low-temperature equivalents of black smokers—suggestive of a regional shallow-marine hydrothermal circulatory system and potential for associated base metal mineral systems. The BV are pervasively potassically altered. Laser Rb-Sr dating on matrix secondary microcline returns ages ca. 1612–1323 Ma, reflecting timing of fluid flow responsible for at least some of the potassic alteration. These are broadly consistent with similar estimates of episodes of regional fluid flow and base metal mineralisation and/or remobilisation in the Mount Isa Province. <b>Citation:</b> Carson, C.J., Kositcin, N., Farkas, J., Champion, D.C., Whelan, J., Redaa, A., Gilbert. S., Henson, P.A., Maas, R., Williams, B. and Doublier, M.P., 2020. The late Paleoproterozoic Buddycurrawa Volcanics, South Nicholson region. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The preserved successions from the Mesoproterozoic Era (1600 to 1000 Ma) are a relatively understudied part of Australian geological evolution, especially considering that this era has a greater time span than the entire Phanerozoic. These rocks are mostly known in variably-preserved sedimentary basins overlying Paleoproterozoic or Archean cratons or at the margins of these cratons. Some metamorphosed equivalents occur within the orogens between or marginal to these cratons. Both energy and mineral resources are hosted in Australian Mesoproterozoic basins, including the highly-prospective organic rich shale units within the Beetaloo Sub-basin (Northern Territory), which form part of the Beetaloo Petroleum Supersystem. The primary aim for this record is to provide a consolidated state of knowledge of Australian basins or successions similar in age to that of the Mesoproterozoic Beetaloo Petroleum Supersystem. The findings of this report will assist prioritising future work, through improved geological understanding and resource prospectivity. This report presents an overview of 14 Mesoproterozoic-age sedimentary basins or successions and their current level of understanding, including location, basin architecture, stratigraphy and depositional environments, age constraints and mineral and energy resources. Basins or successions included in this record are unmetamorphosed or metamorphosed to very low-grade conditions. Recommendations are made for future work to address the main knowledge gaps identified from this review. While some of these basins have been the focus of recent intense study and data acquisition, the extent of knowledge varies broadly across basins. All basins reviewed in this record would benefit from further geochemical and geochronological analyses, and stratigraphic study to better understand the timing of depositional events and their correlation with nearby basins. Elucidation of the post-depositional history of alteration, migration of fluids and/or hydrocarbons would facilitate future exploration and resource evaluation.