Sedimentology
Type of resources
Keywords
Publication year
Service types
Topics
-
The upper Permian to Lower Triassic sedimentary succession in the southern Bonaparte Basin represents an extensive marginal marine depositional system that hosts several gas accumulations, including the Blacktip gas field that has been in production since 2009. Development of additional identified gas resources has been hampered by reservoir heterogeneity, as highlighted by preliminary results from a post drill analyses of wells in the study area that identify reservoir effectiveness as a key exploration risk. The sedimentary succession that extends across the Permian–Triassic stratigraphic boundary was deposited during a prolonged marine transgression and shows a transition in lithofacies from the carbonate dominated Dombey Formation to the siliciclastic dominated Tern and Penguin formations. Recent improvements in chronostratigraphic calibration of Australian biostratigraphic schemes, spanning the late Permian and Early Triassic, inform our review of available palynological data and re-interpretation and infill sampling of well data. The results provide a better resolved, consistent and up-to-date stratigraphic scheme, allowing an improved understanding of the timing, duration, and distribution of depositional environments of the upper Permian to Lower Triassic sediments across the Petrel Sub-basin and Londonderry High. <b>Citation:</b> Owens R., Kelman A., Khider K., Iwanec J., Bernecker T. (2022) Addressing exploration uncertainties in the southern Bonaparte Basin: enhanced stratigraphic control and post drill analysis for upper Permian plays. <i>The APPEA Journal</i> 62, S474-S479
-
<div>Geoscience Australia maintains a national collection of marine geological samples and analytical data from across the Australian region. Digital records of these datasets are held within the Marine Sediment Database (MARS), available as an online resource of c. 2.6 million entries. Here we have extracted data from MARS to collate sediment properties for over 15,000 seabed samples for use as a standalone dataset. Analytical data includes textural composition (mud, sand, gravel), summary statistics for particle size distributions, textural class and calcium carbonate values (where available). Information on sample water depth, location and marine survey is also provided. The sample set spans the coast, continental shelf, slope and deep ocean locations across the Australian marine region (covering the extent of the AusBathyTopo 250m 2023 grid). This dataset has utility for a broad range of purposes including seabed characterisation, sediment transport modelling, habitat characterisation, seabed engineering studies and fundamental geological and sedimentological research.</div><div><br></div><div>Additional metadata of this dataset are provided in the word document accompanied with the dataset. The metadata document describes the attribute table, the sediment carbonate classification and the sediment facies.</div>
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
This Maryborough-Nambour Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Maryborough Basin is a half-graben intracratonic sag basin mainly filled with Early Cretaceous rocks, overlain by up to 100 m of Cenozoic sediments. It adjoins the older Nambour Basin to the south, comprising Triassic to Jurassic rocks. The boundary between the basins has shifted due to changes in sedimentary unit classifications, with the Cretaceous units now restricted to the Maryborough Basin and Jurassic and older units assigned to the Nambour Basin. Both basins are bounded to the west and unconformably overlies older Permian and Triassic rocks in the Gympie Province and Wandilla Province of the New England Orogen. In the south of the Nambour Basin, it partly overlaps with the Triassic Ipswich Basin. The Nambour Basin in the south is primarily composed of the Nambour Formation, with interbedded conglomerate, sandstone, siltstone, shale, and minor coal. Overlying this is the Landsborough Sandstone, a unit with continental, fluviatile sediments and a thickness of up to 450 m. In the north, the Duckinwilla Group contains the Myrtle Creek Sandstone and the Tiaro Coal Measures, which were formerly considered part of the Maryborough Basin but are now associated with the northern Nambour Basin. In contrast, the Maryborough Basin consists of three main Cretaceous units and an upper Cenozoic unit. The Grahams Creek Formation is the deepest, featuring terrestrial volcanic rocks, volcaniclastic sedimentary rocks, and minor pyroclastic rocks. The overlying Maryborough Formation was deposited in a continental environment with subsequent marine incursion and includes mudstone, siltstone, minor sandstone, limestone, conglomerate, and tuff. The upper Cretaceous unit is the Burrum Coal Measures, comprising interbedded sedimentary rocks deposited in fluvial to deltaic environments. The uppermost unit, the Eocene to Miocene Elliott Formation, includes sandstone, siltstone, conglomerate, and shale deposited in fluvial to deltaic environments. Cenozoic sediments overlying the Elliott Formation consist of Quaternary alluvium, coastal deposits, and sand islands like Fraser Island, influenced by eustatic sea level variations. Volcanic deposits and freshwater sediments also occur in some areas. Adjacent basins, such as the Clarence-Moreton Basin and Capricorn Basin, have stratigraphic correlations with the Maryborough Basin. The Oxley Basin lies to the south, overlying the Ipswich Basin. In summary, the Maryborough Basin and the older Nambour Basin exhibit distinct geological characteristics, with varying rock formations, ages, and sedimentary features, contributing to the diverse landscape of the region.
-
This data package provides seismic interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included. The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on the recently published interpretations by Szczepaniak et al. (2023) by providing updated interpretations in the AFER Project area for the Top Cadna-owie (CC10) and Top Pre-Permian (ZU) horizons, as well as interpretations for 13 other horizons that define the tops of play intervals being assessed for their energy resource potential (Figure 1). Seismic interpretations for the AFER Project are constrained by play interval tops picked on well logs that have been tied to the seismic profiles using time-depth data from well completion reports. The Pedirka and Western Eromanga basins are underexplored and contain relatively sparse seismic and petroleum well data. The AFER Project has interpreted play interval tops in 41 wells, 12 seismic horizons (Top Cadna-owie and underlying horizons) on 238 seismic lines (9,340 line kilometres), and all 15 horizons on 77 recently reprocessed seismic lines (3,370 line kilometres; Figure 2). Note that it has only been possible to interpret the Top Mackunda-Winton, Top Toolebuc-Allaru and Top Wallumbilla horizons on the reprocessed seismic lines as these are the only data that provide sufficient resolution in the shallow stratigraphic section to confidently interpret seismic horizons above the Top Cadna-owie seismic marker. The seismic interpretations are provided as point data files for 15 horizons, and have been used to constrain the zero edges for gross-depositional environment maps in Bradshaw et al. (2023) and to produce depth-structure and isochore maps for each of the 14 play intervals in Iwanec et al. (2023). The data package includes the following datasets: 1) Seismic interpretation point file data in two-way-time for up to 15 horizons using newly reprocessed seismic data and a selection of publicly available seismic lines (Appendix A). 2) Geographical layers for the seismic lines used to interpret the top Cadna-owie and underlying horizons (Cadnaowie_to_TopPrePermian_Interpretation.shp), and the set of reprocessed lines used to interpret all 15 seismic horizons (All_Horizons_Interpretation.shp; Appendix B). These seismic interpretations are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and Western Eromanga basins.
-
<div>This data package provides depth and isochore maps generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included.</div><div><br></div><div>The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.</div><div><br></div><div>The depth and isochore maps are products of depth conversion and spatial mapping seismic interpretations by Szczepaniak et al. (2023) and Bradshaw et al. (2023) which interpreted 15 regional surfaces. These surfaces represent the top of play intervals being assessed for their energy resource potential (Figure 1). These seismic datasets were completed by play interval well tops by Bradshaw et al. (in prep), gross depositional environment maps, zero edge maps by Bradshaw et al. (in prep), geological outcrop data as well as additional borehole data from Geoscience Australia’s stratigraphic units database.</div><div><br></div><div>Depth and isochore mapping were undertaken in two to interactive phases; </div><div><br></div><div>1. A Model Framework Construction Phase – In this initial phase, the seismic interpretation was depth converted and then gridded with other regional datasets. </div><div><br></div><div>2. A Model Refinement and QC Phase – This phase focused on refining the model and ensuring quality control. Isochores were generated from the depth maps created in the previous phase. Smoothing and trend modelling techniques were then applied to the isochore to provide additional geological control data in areas with limited information and to remove erroneous gridding artefacts. </div><div><br></div><div>The final depth maps were derived from isochores, constructing surfaces both upward and downward from the CU10_Cadna-owie surface, identified as the most data-constrained surface within the project area. This process, utilizing isochores for depth map generation, honours all the available well and zero edge data while also conforming to the original seismic interpretation.</div><div><br></div><div>This data package includes the following datasets: </div><div><br></div><div>1) Depth maps, grids and point datasets measured in meters below Australian Height Datum (AHD, for 15 regional surfaces (Appendix A). </div><div>2) Isochore maps, grids and point datasets measured in meters, representing 14 surfaces/play internals (Appendix B).</div><div> </div><div>These depth and isochore maps are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and western Eromanga basins, and will help to support future updates of 3D geological and hydrogeological models for the Great Artesian Basin by Geoscience Australia.</div><div><br></div>
-
Would you like to make your own rock? In this set of activities you can simulate the natural processes that form sedimentary rocks in just a few hours, instead of taking millions and millions of years. All the activities can be undertaken using readily available materials. Supervision recommended.
-
<div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20 km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500 m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>
-
The CANYONS voyage on R/V Investigator aimed to investigate past and present processes governing the flow pathways, formation and geochemical signatures of Antarctic Bottom Water (AABW) off Cape Darnley, East Antarctica. The proposed survey area was focussed on the Wild and Daly canyons and the adjacent sediment drifts - the Daly and ‘Armand’ drifts. The survey aimed to collect systematic multibeam bathymetry and sub-bottom profiles across the region to support collection of long sediment cores (up to 24 m), kasten cores and multicores, CTDs and deep towed camera transects. Due to a medical evacuation 5 days after arriving in the survey area we were only able to partially map the northern part of Wild Canyon and the ‘Armand’ Drift, collect 1 piston core (15.2 m), 2 kasten cores and 2 CTDs. Some seafloor images were also obtained from a camera system mounted to the CTD frame. Sediment cores were sampled for physical properties, microfossil content, biostratigraphic markers, ancient DNA and various geochemical signatures. Water samples from the CTDs were collected for hydrochemistry, biogeochemistry and environmental DNA. Analysis of these datasets is currently underway and forms part of several PhD projects. Underway water samples were collected during transit and within the survey area for hydrochemistry, biogeochemistry and environmental DNA (eDNA). In addition, a magnetometer was towed on the southward transit and a continuous plankton recorder on the northward transit. Aerosols were sampled throughout the survey for trace elements and bio-aerosols. Several Argo floats, including 2 biogeochemical Argo floats were deployed during the transit and in the survey area. We undertook two days of opportunistic science within Two Peoples Canyon offshore Albany following the medical evacuation. This work focussed on characterising the seafloor biota of this poorly known region by undertaking 2 deep tow camera transects and 1 biological dredge. We also collected 3 CTDs and 1 kasten core to understand the modern and past oceanography in the context of previous work in the region. Outreach was conducted throughout the voyage by our Sea2School program to Primary and High school students across Australia and internationally. We undertook public outreach via regular blogs, podcasts, posts to our CANYONS Twitter, Facebook and Instagram accounts and through media interviews. Many of the science team were early career researchers and post-graduate students. They gained not only first-hand experience and skills in undertaking marine science at sea, but also in responding and adapting to rapidly changing situations with grace and resilience.
-
This web service contains sediment and geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012, on RV Solander (survey GA0339/SOL5650).