From 1 - 10 / 31
  • The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. As part of this initiative, this record presents new whole-rock geochemistry data from 967 samples of sedimentary rocks sampled from 26 wells in the South Nicholson region, including the Proterozoic South Nicholson Basin and Lawn Hill Platform, the Neoproterozoic to Devonian Georgina Basin and the Jurassic to Cretaceous Carpenteria Basin. This work complements other components of the EFTF program, including the South Nicholson Basin seismic survey, a comprehensive geochronology program and hydrocarbon prospectivity studies to better understand the geological evolution and basin architecture of the region, and facilitate identification of areas of unrecognised resource potential and prospectivity. The South Nicholson region, straddling north-eastern Northern Territory and north-western Queensland, arguably represents one of the least geologically understood regions of Proterozoic northern Australia. The South Nicholson region is situated between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland, both with demonstrated hydrocarbon and base metal potential. These new geochemical data provide baseline understanding of regional resource prospectivity of sedimentary rocks in the South Nicholson region. During 2017 and 2018, 967 drill core and cuttings were sampled from 26 legacy boreholes that intersected the South Nicholson region housed in Northern Territory Geological Survey’s core repository in Darwin, the Geological Survey of Queensland’s core repository in Brisbane and Geoscience Australia’s core repository in Canberra. This data release contains the results of elemental analyses on these samples, which include X-Ray Fluorescence (XRF), Loss-On-Ignition (LOI), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for all samples, in addition to ron titration (FeO) for selected samples. The data was generated in the Inorganic Geochemistry laboratory at Geoscience Australia between 2017 and 2019 as part of the EFTF program. All data was quality controlled based on Certified Reference Material standards (CRMs) and duplicate samples analysed with each batch of samples.

  • Exploring for the future presentation- The structure and stratigraphy of the South Nicholson region – implications for resource prospectivity; Insight from the EFTF geochronology and deep reflection seismic programs

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents SHRIMP U-Pb zircon geochronology on 10 volcaniclastic rocks taken from NDI Carrara 1.

  • The 2.1─1.79 Ga Trans-Australian and Canadian Trans-Hudson orogens preserve a common record of Himalayan-scale orogenesis and voluminous Cordilleran-style magmatism behind which turbidite-dominated sedimentary sequences evolved in a back-arc or retro-arc foreland setting. Successive cycles of subduction retreat and advance drove the orogenic process, culminating in continent-continent collision and closure of a shared and formerly contiguous ocean basin – the Paleoproterozoic Diamantina and Manikewan oceans. Cordilleran-style arc magmatism in proto-Australia commenced along the southern reaches of the Diamantina Ocean with emplacement of the 2005-1975 Ma Dalgaringa batholith along the leading edge of the Pilbara Craton (Gascoyne Province) before both it and its host craton docked against the Yilgarn Craton, resulting in the Glenburgh Orogeny. After a brief episode of post-kinematic granite magmatism from 1965─1945 Ma, tectonic activity switched to the opposing margin of the Diamantina Ocean in what is now northern Australia where a further three cycles of upper plate orogenesis and Cordilleran-style magmatism occurred from 1890─1850 Ma, 1840─1810 Ma and 1810─1760 Ma along a convergent continental margin extending from the Kimberley and Pine Creek regions southward through the Mount Isa domain into the eastern Gawler Craton. Batholiths developed along this margin include granites of both low and high Sr/Y composition with the more adakitic varieties interpreted to have been intruded during periods of enhanced asthenospheric upwelling accompanying the opening of one or more slab windows following slab breakoff, tearing and/or subduction of an actively spreading oceanic ridge. Terminal collision between the North and South Australian (Mawson) cratons at ca. 1790 Ma brought this succession of subduction-related events to a close, although neither this event nor the corresponding Trans-Hudson orogen need equate to final assembly of the Nuna supercontinent. Instead, the 1870 Ma peak in global compilations of magmatic and detrital zircon ages may be more simply interpreted as the result of elevated tectonism and magmatism along a Paleoproterozoic Cordilleran-style continental plate margin that was trans-continental in scale and continued uninterrupted from proto-Australia into northern Canada and beyond. <b>Citation:</b> G.M. Gibson, D.C. Champion, M.P. Doublier; The Paleoproterozoic Trans-Australian Orogen: Its magmatic and tectonothermal record, links to northern Laurentia, and implications for supercontinent assembly. GSA Bulletin 2024; doi: https://doi.org/10.1130/B36255.1

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the NTGS stratigraphic drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory. This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230005c.

  • The South Nicholson region, which includes the Paleoproterozoic Isa Superbasin, the Mesoproterozoic South Nicholson Group and overlying younger sediments, is sparsely explored and has recently come into increased focus as a result of the Australian Government’s Exploring for the Future program. Previous exploration has identified potential shale gas plays within the River and Lawn supersequences of the Isa Superbasin in northwest Queensland’s northern Lawn Hill Platform region. Understanding mineralogy is important for characterising shale reservoirs, as mechanical properties such as shale brittleness are influenced by mineral composition. Mineralogy can, therefore, be utilised as a proxy for mechanical properties that are crucial to minimising risks associated with exploring for and developing shale reservoirs. This study utilises three different methods for calculating brittleness; XRD mineralogy, XRF major element geochemistry, and geomechanical properties. Results indicate highly variable mineralogy within the analysed samples, demonstrating heterogeneity in shale brittleness throughout the studied supersequences. Brittleness calculated from XRD analysis ranges from ductile to brittle with zones of brittle shales present in all supersequences. Increasing quartz and decreasing clay content is the dominant control on shale brittleness in the studied samples. Correlation between XRF major element geochemistry and XRD mineralogy is demonstrated to be moderate to poor, with brittleness derived from XRF major element geochemistry observed to be significantly higher than brittleness derived from XRD mineralogy. Conversely, brittleness derived from geomechanical properties agrees closely with XRD mineralogy derived brittleness. Hence, XRF major element geochemistry data are not recommended in the South Nicholson region to calculate brittleness. Analysis of brittleness indices from this study, in combination with total organic carbon content drawn from regional geochemical analysis in the South Nicholson region, identifies potential shale gas target intervals in the River, Term, and Lawn supersequences. Data presented on correlated well sections highlights intervals of exploration interest within these supersequences, being those depths where high organic content, brittle rocks are identified. The rocks that meet this criteria are primarily constrained to the already known potential shale gas plays of the River and Lawn supersequences. Recent data from Geoscience Australia implies that these potential shale gas plays are likely to extend from the northern Lawn Hill Platform, where they have been primarily identified to date, underneath the South Nicholson Basin and into the Carrara Sub-basin, significantly increasing their lateral extent. <b>Citation:</b> A. H. E. Bailey, A. J. M. Jarrett, L. Wang, B. L. Reno, E. Tenthorey, C. Carson & P. Henson (2022) Shale brittleness within the Paleoproterozoic Isa Superbasin succession in the South Nicholson region, Northern Australia, <i>Australian Journal of Earth Sciences, </i>DOI: 10.1080/08120099.2022.2095029

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148975)</div>

  • The Neoproterozoic to Middle Ordovician sediments of the Officer Basin, Australia are difficult to correlate, in part because biostratigraphic studies of acritarchs and stromatolites are localised, isotopic studies are rare, and seismic models are technically challenged by the occurrence of basaltic and halite prone-sections. Hence, the chemostratigraphic framework presented here provides an independent stratigraphic model for the Neoproterozoic to Middle Ordovician sediments of the Officer Basin. A total of six chemostratigraphic mega-sequences have been geochemically defined and assigned to the stratigraphy; these have been further subdivided into twenty-eight chemostratigraphic sequences. The chemostratigraphic zonation has been established upon elemental changes attributed to provenance and climatic variation which can be used for correlation as they convey regional, rather than local, changes in sedimentation. The elemental data reveals that there is lateral variation within the established lithostratigraphy (e.g., within the members of the Observatory Hill and Hussar formations), which is suggestive of localised sediment source input to different areas of the basin. Presented to the 2022 Central Australian Basins Symposium IV (CABS) 29-30 August (https://agentur.eventsair.com/cabsiv/)

  • Exploring for the Future (EFTF) is a four-year $100.5 million initiative by the Australian Government conducted by Geoscience Australia in partnership with state and Northern Territory government agencies, CSIRO and universities to provide new geoscientific datasets for frontier regions. As part of this program, Geoscience Australia acquired two new seismic surveys that collectively extend across the South Nicholson Basin (L120 South Nicholson seismic line) and into the Beetaloo Sub-basin of the McArthur Basin (L212 Barkly seismic line). Interpretation of the seismic has resulted in the discovery of new basins that both contain a significant section of presumed Proterozoic strata. Integration of the seismic results with petroleum and mineral systems geochemistry, structural analyses, geochronology, rock properties and a petroleum systems model has expanded the knowledge of the region for energy and mineral resources exploration. These datasets are available through Geoscience Australia’s newly developed Data Discovery Portal, an online platform delivering digital geoscientific information, including seismic locations and cross-section images, and field site and well-based sample data. Specifically for the EFTF Energy project, a petroleum systems framework with supporting organic geochemical data has been built to access source rock, crude oil and natural gas datasets via interactive maps, graphs and analytical tools that enable the user to gain a better and faster understanding of a basin’s petroleum prospectivity. <b>Citation:</b> Henson Paul, Robinson David, Carr Lidena, Edwards Dianne S., MacFarlane Susannah K., Jarrett Amber J. M., Bailey Adam H. E. (2020) Exploring for the Future—a new oil and gas frontier in northern Australia. <i>The APPEA Journal</i><b> 60</b>, 703-711. https://doi.org/10.1071/AJ19080