From 1 - 10 / 13
  • <div>The AusSeabed Bathymetry Compilations Coverage Database contains polygon extents of bathymetry data acquisitions along with identifying attributes and contact details where the data is not held by Geoscience Australia. It is an important scientific resource that identifies data spanning coastal, continental shelf and deep sea locations. </div><div><br></div><div>This dataset is live and will continue to be augmented as coverage details are supplied from AusSeabed collaborators who wish to share their knowledge of data availability to the broader marine community. The database is updated regularly and is made available via the AusSeabed Marine Data Portal using OGC compliant web services. Compilations have been generated from one or more Survey/Data Acquisitions by a wide range of organisations and countries, both inside and outside Australia's marine jurisdiction, using multiple systems and for various applications. Compilation coverages are published where the polygon extents intersects with Australia's marine jurisdiction, including the Australian Antarctic Territory. Each polygon in the layer contains metadata describing compilation details. </div><div>Note that polygons may not be representative of the true survey extent due to the data gridding process. </div><div><br></div><div>Please contact us at ausseabed@ga.gov.au if you wish to contribute coverage information to the database.</div>

  • <div>The Rowley Shelf 3D seismic derived bathymetry compilation (20220005C) was produced in 2023 as part of the a collaboration between The University of Western Australia, Norwegian Geotechnical Institute and UniLasalle and Geoscience Australia through the AusSeabed Community. The compilation integrates 223 bathymetry grids derived from available and workable 3D seismic reflection datasets into a 30 m resolution 32-bit GeoTIFF. A detailed workflow is described in: Lebrec, U., Paumard, V., O'Leary, M. J., and Lang, S. C., 2021, Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets: Earth System Science Data, v. 13, no. 11, p. 5191-5212 https://doi.org/10.5194/essd-13-5191-2021, 2021.</div><div><br></div><div><br></div><div>This dataset is not to be used for navigational purposes.</div>

  • <div>The Southwest Margins seismic-derived bathymetry was produced in 2023 as part of a collaboration between The University of Western Australia and the AusSeabed Community. The compilation integrates 19 bathymetry grids derived from available and workable 3D seismic datasets into a 30 m resolution 32-bit GeoTIFF, including both reflection and navigation derived data. A detailed workflow is described in: Lebrec, U., Paumard, V., O'Leary, M. J., and Lang, S. C., 2021, Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets: Earth System Science Data, v. 13, no. 11, p. 5191-5212 https://doi.org/10.5194/essd-13-5191-2021, 2021.</div><div><br></div><div>This dataset is not to be used for navigational purposes.</div><div><br></div>

  • The Bonaparte and Browse Basins 3D seismic derived bathymetry compilation (20220002C) was produced by the University of Western Australia, Norwegian Geotechnical Institute and UniLasalle in collaboration with Geoscience Australia through the AusSeabed initiative. The compilation integrates 127 bathymetry grids derived from available and workable 3D seismic datasets into a 30 m resolution 32-bit geotiff. A detailed workflow is described in: Lebrec, U., Paumard, V., O'Leary, M. J., and Lang, S. C., 2021, Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets: Earth System Science Data, v. 13, no. 11, p. 5191-5212 https://doi.org/10.5194/essd-13-5191-2021, 2021. This dataset is not to be used for navigational purposes.

  • The Australian Bathymetry and Topography (AusBathyTopo) Torres Strait dataset contains depth and elevation data compiled from all available data within the Torres Strait into a 30 m-resolution Digital Elevation Model (DEM). The Torres Strait lies at the northern end of the Great Barrier Reef (GBR), the largest coral reef ecosystem on Earth, and straddles the Arafura Sea to the west and the Coral Sea to the east. The Torres Strait area is bounded by Australia, Indonesia and Papua New Guinea. Bathymetry mapping of this extensive reef and shoal system is vital for the protection of the Torres Strait allowing for the safe navigation of shipping and improved environmental management. Over past ten years, deep-water multibeam surveys have revealed the highly complex continental slope canyons in deeper Coral Sea waters. Shallow-water multibeam surveys conducted by the US-funded Source-to-Sink program revealed the extensive Fly River delta deposits. Airborne LiDAR bathymetry acquired by the Australian Hydrographic Office cover most of the Torres Strait and GBR reefs, with coverage gaps supplemented by satellite derived bathymetry. The Geoscience Australia-developed National Intertidal DIgital Elevation Model (NIDEM) improves the source data gap along Australia’s vast intertidal zone. We acknowledge the use of the CSIRO Marine National Facility (https://ror.org/01mae9353 ) in undertaking this research.” The datasets used were collected by the Marine National Facility on 13 voyages (see Lineage for identification). All source bathymetry data were extensively edited as point clouds to remove noise, given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum. The 30 m-resolution grid is a fundamental dataset to underpin marine habitat mapping, and can be used to accurately simulate water mixing within a whole-of-GBR scale hydrodynamic model. This dataset is not to be used for navigational purposes.

  • This dataset contains bathymetry (depth) products from the compilation of all available source bathymetry data within the Kerguelen Plateau into a 100 m-resolution Digital Elevation Model (DEM). Heard Island and McDonald Islands are situated on the Kerguelen Plateau within the south-west Indian Ocean and lie within Australia's marine jurisdiction. Heard Island and McDonald Islands (HIMI) are surrounded by an Exclusive Economic Zone extending 200 nautical miles from their coasts and much of the Kerguelen Plateau south of Heard Island has been recognised as Australian Extended Continental Shelf by the UN Commission for the Legal Continental Shelf. The area is currently targeted by fishers licensed under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). The purpose of the bathymetry grid is to improve the geomorphic detail of seafloor features, including submarine volcanic hills on the top of the Kerguelen Plateau and a complex of submarine channels draining the southern flank of northern plateau. Australian Hydrographic Office-supplied single beam echo sounder bathymetry data were used to develop the general depth variation across the Kerguelen Plateau and adjacent Williams Ridge extending to the south-east of the central plateau. Deep-water multibeam bathymetry data reveal the complexity of the seafloor on Kerguelen Plateau and the surrounding abyssal plains and basins. These multibeam surveys were conducted both as systematic surveys by Research Vessel (RV) Investigator and Sonne over Williams Ridge. Other multibeam data were obtained from transit voyages that crossed through the Kerguelen Plateau and Williams Ridge area. SHOM-supplied combined multibeam and single beam data were collected around the French EEZ and approaches to Kerguelen Island, which is French territory. Austral Fisheries provided extensive crowdsourced bathymetry (CSB) data from their various blue-water fishing vessels using single beam echo sounders. These fishing vessels operate within the Kerguelen Plateau and Williams Ridge region under licence from the Australian Fisheries Management Authority. Austral Fisheries CSB date were provided to the Australian Antarctic Division (AAD) for restricted use in this project. All source multibeam and single beam bathymetry data were extensively edited as 3D point clouds to remove obvious anomalous noise, and given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum prior to the grid interpolation process.

  • This collection contains all national level bathymetry grids held by Geoscience Australia (GA) dating back to survey data obtained since 1993. <b>Value: </b>Bathymetry data is used for a wide range of marine applications including: navigation, environmental assessment, jurisdictional boundaries, resource exploration. <b>Scope: </b>Data holdings lying within the offshore area of Australia, including international waters. <b>To access the AusSeaBed Marine Data Portal</b> use the following link: <a href="https://portal.ga.gov.au/persona/marine#/">https://portal.ga.gov.au/persona/marine#/</a>

  • This dataset contains a bathymetry (depth) grid of the Williams Ridge region, southeast Indian Ocean, at 100 metre resolution produced from the compilation of all available source data. These data include single beam echo sounder bathymetry data supplied by the Australian Hydrographic Office to generate the general depth model, and deep-water multibeam bathymetry data to reveal the complexity of the seafloor on Williams Ridge, Kerguelen Plateau and the surrounding abyssal plains and basins. Multibeam bathymetry data were collected during systematic surveys over Williams Ridge by Research Vessel (RV) Investigator in 2020 and RV Sonne, and on vessel transits that crossed through the region. The RV Investigator survey also collected seismic, magnetic and gravity data, and rock samples to provide new knowledge of the geological and tectonic evolution of the region (see www.mnf.csiro.au/en/voyages/IN2020_V01). Austral Fisheries also provided crowdsourced bathymetry (CSB) data from fishing vessels collected using single beam echo sounders. These fishing vessels operate within the Kerguelen Plateau and Williams Ridge region licenced under the Conservation of Antarctic Marine Living Resources. Austral Fisheries CSB data were provided to the Australian Antarctic Division for restricted use in this compilation product. All source multibeam and single beam bathymetry data were edited as 3D point clouds to remove anomalous noise, and given a consistent WGS84 horizontal datum, and where possible, an approximate MSL vertical datum prior to the grid interpolation process. This dataset was developed to support the management of Australia’s marine jurisdiction and is published with permission of the CEO, Geoscience Australia. This dataset is not to be used for navigational purposes

  • In 2005 Geoscience Australia and the National Oceans Office undertook a joint project to produce a consistent, high-quality 9 arc second (0.0025° or ~250m at the equator) bathymetric grid for Australian waters. In 2009 a number of new datasets were included in an updated version of the grid. The 2009 bathymetric grid of Australia has been produced to include recently acquired datasets, and solutions to issues identified in the previous version. The revised grid has the same extents as its 2005 counterpart, including the Australian water column jurisdiction lying between 92° E and 172° E, and 8° S and 60° S. The waters adjacent to the continent of Australia and Tasmania are included, as are areas surrounding Macquarie Island, and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands. The area selected does not include Australia's marine jurisdiction offshore from the Territory of Heard and McDonald Islands and the Australian Antarctic Territory. This report details the datasets and procedures used to produce the 2009 bathymetric grid of Australia. As per the 2005 grid, the 0.0025 decimal degree (dd) resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist) (Webster and Petkovic, 2005). In areas where no sounding data are available (in waters off the Australian shelf), the grid is based on the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO (Amante and Eakins, 2008) satellite derived bathymetry. The topographic data (on shore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd NZ topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). The final dataset has been provided in ESRI grid and ER Mapper (ers) formats. An associated shapefile has been produced so that the user can identify the input datasets that were used in the final grid. IMPORTANT INFORMATION This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons. Comments or queries about the data included in the grid (or excluded) can be directed to: IDEASRequests@ga.gov.au. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.