From 1 - 10 / 2979
  • This service has been created specifically for display in the National Map and the chosen symbology may not suit other mapping applications. The Australian Topographic web map service is seamless national dataset coverage for the whole of Australia. These data are best suited to graphical applications. These data may vary greatly in quality depending on the method of capture and digitising specifications in place at the time of capture. The web map service portrays detailed graphic representation of features that appear on the Earth's surface. These features include the administration boundaries from the Geoscience Australia 250K Topographic Data, including state forest and reserves.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. cloates_3m is an ArcINFO grid of Point Cloates of Carnarvon Shelf survey area produced from the processed EM3002 bathymetry data using the CARIS HIPS and SIPS software

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • The global ocean absorbs 30% of anthropogenic CO2 emissions each year, which changes the seawater chemistry. The absorbed CO2 lowers the pH of seawater and thus causes ocean acidification. The pH of the global ocean has decreased by approximately 0.1 pH units since the Industrial Revolution, decreasing the concentration of carbonate ions. This has been shown to reduce the rate of biological carbonate production and to increase the solubility of carbonate minerals. As more CO2 is emitted and absorbed by the oceans, it is expected that there will be continuing reduction in carbonate production coupled with dissolution of carbonate sediments. This study was undertaken as part of a program to collect baseline data from Australia's seabed environments and to assess the likely impacts of ocean acidification on continental shelf sediments. Over 250 samples from four continental shelf areas of northern Australia (Capricorn Reef, Great Barrier Reef Lagoon, Torres Strait, Joseph Bonaparte Gulf) were analysed to characterise the surface sediment mineral and geochemical composition. Of particular importance was the quantification of carbonate minerals (calcite, aragonite, high-magnesium calcite) and the magnesium content in high-magnesium calcite. The latter determines the solubility of high-magnesium calcite, which is most soluble of all common carbonate minerals. The thermodynamic stability of carbonate minerals as referred to the state of saturation was calculated using the current and predicted equatorial ocean water composition [1]. Northern Australian continental shelf sediments are largely dominated by carbonate. High-magnesium calcite had the highest abundance of all carbonate minerals followed by aragonite in all areas. The average mol% MgCO3 in high-magnesium calcite varied from 13.6 to 15.5 mol% for the different areas, which is in agreement with the global average magnesium concentration in high-magnesium calcite in tropical and subtropical regions [2].

  • Legacy product - no abstract available