From 1 - 10 / 357
  • This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.

  • Seismic data, calibration and State of Health files. 2005-2007

  • The product consists of 8,800 line kilometres of time‐domain airborne electromagnetic (AEM) geophysical data acquired over the far north part of South Australia known as the Musgrave Province. This product release includes: a) the measured AEM point located data, b) electrical conductivity depth images derived from the dataset, and c) the acquisition and processing report. The data were acquired using the airborne SkyTEM312 Dual Moment 275Hz/25Hz electromagnetic and magnetic system, which covered a survey area of ~14,000 km2, which includes the standard 1:250 000 map sheets of SG52-12 (Woodroffe), SG52-16 (Lindsay), SG53-09 (Alberga) and SG53-13 (Everard). The survey lines where oriented N-S and flown at 2km, 500m and 250m line spacing. A locality diagram for the survey is shown in Figure 1. This survey was funded by the Government of South Australia, as part of the Plan for Accelerating Exploration (PACE) Copper Initiative, through the Department of the Premier and Cabinet, (DPC) and the Goyder Institute of Water Research. Geoscience Australia managed the survey as part of a National Collaborative Framework project agreement with SA. The principal objective of this project was to capture a baseline geoscientific dataset to provide further information on the geological context and setting of the area for mineral systems as well as potential for groundwater resources, of the central part of the South Australian Musgrave Province. Geoscience Australia contracted SkyTEM (Australia) Pty. Ltd. to acquire SkyTEM312 electromagnetic data, between September and October 2016. The data were processed and inverted by SkyTEM using the AarhusInv inversion program (Auken et al., 2015) and the Aarhus Workbench Laterally Constrained Inversion (LCI) algorithm (Auken et al. 2005; Auken et al. 2002). The LCI code was run in multi-layer, smooth-model mode. In this mode the layer thicknesses are kept fixed and the data are inverted only for the resistivity of each layer. For this survey a 30 layer model was used. The thickness of the topmost layer was set to 2 m and the depth to the top of the bottommost (half-space) layer was set to 600 m. The layer thicknesses increase logarithmically with depth. The thicknesses and depths to the top of each layer are given in Table 1. The regional AEM survey data can be used to inform the distribution of cover sequences, and at a reconnaissance scale, trends in regolith thickness and variability, variations in bedrock conductivity, and conductivity values of key bedrock (lithology related) conductive units under cover. The data will also assist in assessing groundwater resource potential and the extent of palaeovalley systems known to exist in the Musgrave Province. A considerable area of the survey data has a small amplitude response due to resistive ground. It very soon becomes evident that lack of signal translates to erratic non-monotonic decays, quite opposite to the smooth transitional exponential decays that occur in conductive ground. Some sections of the data have been flown over what appears to be chargeable ground, hence contain what potentially can be identified as an Induced Polarization effect (airborne IP—AIP). For decades these decay sign changes, which characterize AIP, have not been accounted for in conventional AEM data processing and modelling (Viezzoli et al., 2017). Instead they have mostly been regarded as noise, calibration or levelling issues and are dealt with by smoothing, culling or applying DC shifts to the data. Not accounting for these effects is notable on the contractor’s conductivity-depth sections, where data can’t be modelled to fit the data hence large areas of blank-space have been used to substitute the conductivity structure. The selection of the survey area was undertaken through a consultative process involving the CSIRO, GOYDER Institute, Geological Survey of South Australia and the exploration companies currently active in the region (including industry survey partner PepinNini Minerals Ltd). The data will be available from Geoscience Australia’s web site free of charge. It will also be available through the South Australian Government’s SARIG website at https://map.sarig.sa.gov.au. The data will feed into the precompetitive exploration workflow developed and executed by the Geological Survey of South Australia (GSSA) and inform a new suite of value-added products directed at the exploration community.

  • This service includes world bathymetry, elevation (hillshade), and satellite imagery data, and ocean, country, population and natural features. The information was derived from various sources, including Natural Earth and Landsat Imagery. It is a cached service with a Web Mercator Projection. The service contains layer scale dependencies.

  • 60 second video announcing Digital Earth Australia - a world first analysis platform for satellite imagery and other Earth observations.

  • This Agreements ontology is designed to model 'agreements' which are social contracts that include: licenses, laws, contracts, Memoranda of Understanding, standards and definitional metadata. Its purpose is to support data sharing by making explicit the relationships between agreements and data and agreements and Agents (people and organisations). Eventually it will also help with the interplay between different classes of agreements. We think of this ontology as a 'middle' ontology, that is one which specializes well-known, abstract, upper ontologies and is able to be used fairly widely but is expected to be used particular contexts in conjunction with detailed, domain-specific, lower ontologies. We have tried to rely on: existing agent, data manipulation, metadata and licence ontologies where possible. As such we specialise the ORG and FOAF ontologies; the PROV ontology; the Dublin Core Terms RDF schema & DCAT ontology; and the ODRS vocabulary & Creative Commons RDF data models for those areas, respectively

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.

  • Zip file containing all ModelVision files (created with ModelVision version 14.00.05) used in the GA Record: 'An integrative approach to investigating crustal architecture and cover thickness in the Southern Thomson region: Modelling new geophysical data'. All ModelVision files have the extension .ses and are named as per their location in the GA record described above. The zip file also contains an information (readme) file.

  • Promotional flyer showing the proposed gazettal blocks of the 2017 offshore acreage release and providing releavnt geoscientific and administrative information.

  • Promotional flyer showing the proposed gazettal blocks of the 2017 offshore acreage release and providing releavnt geoscientific and administrative information.