2017
Type of resources
Keywords
Publication year
Distribution Formats
Service types
Topics
-
Sixteen samples from the Mobil Petroleum exploration well Cody 1, Exmouth Gulf, Western Australia were examined for conodonts and other phosphatic microfossils. Conodonts were recovered in four samples and other faunal elements were found in an additional nine samples
-
New 2D seismic data, acquired by Geoscience Australia in the northern Houtman Sub-basin of the Perth Basin, provides important information on the prospectivity of this frontier area. To date, lack of quality seismic data and limited geological understanding led to the perception that the hydrocarbon potential of the area is very low. However, interpretation of the newly collected data suggests that the northern Houtman depocentre contains up to 15 km of pre-breakup sediments composed of Permian, Triassic and Jurassic successions, which potentially contain multiple source rock, reservoir and seal intervals. The Permian synrift succession is confined to a series of large half-graben that are controlled by basement-involved faults separating the Houtman depocentre from the Bernier Platform. This succession is up to 10 km thick and is mapped throughout the inboard part of the new seismic grid. A prominent unconformity at the top of the Permian synrift sequence is overlain by a thick (up to 1800 m) and regionally extensive Kockatea Shale sequence, which has been tied to the regional interpretation of the basin. The thickness of the overlying Triassic succession ranges from about 1 km in the inboard part of the basin to up to 5 km further outboard. The Jurassic succession is thickest (up to 4 km) in the outboard part of the basin and is interpreted to contain sequences corresponding to the Cattamarra, Cadda and Yarragadee formations. Our study integrates new results from regional mapping, geophysical modelling and petroleum systems analysis, which enables a more accurate prospectivity assessment of this frontier basin.
-
Small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) are used to directly detect the processes of hydrocarbon generation in the 10 nm to 10 μm size pores in carbonate and siliciclastic rocks which contain no land-plant material suitable for conventional maturity determination by vitrinite reflectance. The method takes advantage of the pore-size-specific variation of neutron scattering contrast between the solid rock matrix and pore-space content with depth, which is caused by thermal maturation of organic matter through the oil and gas generation windows. SANS and USANS measurements were performed on bedding plane-orientated core slices, extracted from a series of 10 to 12 depth intervals for three wells, CKAD0001, MacIntyre 1 and Baldwin 1 in the southern Georgina Basin, central Australia. The depth intervals, intersecting the organic-rich basal ‘hot’ shales of the middle Cambrian Arthur Creek Formation, were selected based on Rock-Eval pyrolysis data. SANS and USANS results indicate that oil generation has occurred in the past in nano-sized pores in rocks that are now at depths of around 538.4 m in CKAD0001 and 799.3 m in MacIntyre 1. Furthermore, in the CKAD0001 well, the oil-wet pores extend into the larger pore-size range (at least up to 10 μm) due to the efficient expulsion of oil. At around 880 m in Baldwin 1, the influence of pyrobitumen reverts pore space from gas wet to oil wet. These hydrocarbons have remained in situ since the Devonian when the Neoproterozoic to Paleozoic section was exhumed in the Alice Springs Orogeny and subsequently eroded, preserving only remnants of the once extensive basin sediments.
-
A preliminary version of the assessment of unconventional resources potentially contained in the Otway Basin. This version will be updated at a later date.
-
The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.
-
The 2016 Lawn Hill VTEM™Plus airborne electromagnetic (AEM) survey was funded under the Queensland Government’s Future Resources (Mount Isa Geophysics) Initiative and managed by Geoscience Australia on behalf of the Geological Survey of Queensland. The survey covers an area of 3215 km2 which aims to attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits under shallow sedimentary cover. The survey is an extension to the 2016 East Isa VTEM™Plus Survey (eCAT:104700)
-
Logs and Calibrations of Seismic stations. 2005-2017
-
The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.
-
The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica between 1948 – 1980s. Files include a scanned copy of the original handwritten field notebook, transcription of the notebook’s contents transcribed by volunteers and validated by an experienced geologist, and a csv file of the transcription with Text Encoding Initiative (TEI) tags. The original Antarctic field notebooks are held at the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia, Canberra.
-
This report outlines geoscientific advice relating to the management of Antarctic Specially Protected Area (ASPA) No. 143, Marine Plain, in the Vestfold Hills, East Antarctica. The advice is based on expert geoscientific interpretation of the relevant literature relating to human disturbance in polar environments. No field observations or experiments were undertaken as part of the preparation of this advice.