From 1 - 10 / 700
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • Aims: Groundwater is vital for community water supplies and economic development in Australia. It also supports indigenous cultural values and sustains a range of groundwater dependent ecosystems, including springs and vegetation communities. Geoscience Australia’s regional assessments and basin inventories are investigating Australia’s groundwater systems to improve knowledge of the nation’s groundwater systems under the Exploring for the Future (EFTF) Program. Where applicable, we applied integrated basin analysis workflows to build models of geological and hydrostratigraphic architecture and link them to a nationally consistent chronostratigraphic framework. While the focus of this paper is the Great Artesian Basin (GAB), the overlying Lake Eyre Basin (LEB) and the Upper Darling Floodplain (UDF) region, these datasets and surfaces continue expanding beyond this current study area by linking additional studies using this consistent approach, towards building a national picture of groundwater systems. Method: Geoscience Australia continues to refine the chronostratigraphic framework that correlates time equivalent geological units from neighbouring basins and hydrostratigraphy for the GAB, LEB and UDF (Figure 1), infilling key data and knowledge gaps from previous compilations and adding new interpretation. In collaboration with Commonwealth, State and Territory government agencies, we compiled and standardised data from thousands of boreholes, including stratigraphic (Norton & Rollet, 2023; Vizy & Rollet, 2023a) and biostratigraphic picks (Hannaford & Rollet, 2023), 2D and 3D seismic (Szczepaniak et al., 2023) and airborne electromagnetic derived conductivity sections across the study area (McPherson et al., 2022a &b; Wong et al., 2023). We undertook a detailed stratigraphic review of thousands of boreholes with geophysical logs to construct consistent regional transects across the GAB, LEB and UDF (Norton & Rollet, 2023). In addition we applied geological time constraints from hundreds of boreholes with existing and newly interpreted biostratigraphic data (including from legacy palynological preparations from the Geoscience Australia archives where old reports could not be found) (Hannaford & Rollet, 2023). New biostratigraphic data from core samples has been analysed from bores in the Northern Territory, South Australia and Queensland. The biostratigraphic data was calibrated to the most recent biostratigraphic zonation scheme and used to provide geological time constraint to the stratigraphic picks. Results: We infilled the stratigraphic correlations along key transects across Queensland, New South Wales, South Australia and the Northern Territory to refine nomenclature and stratigraphic relationships between the Surat, Eromanga and Carpentaria basins, improving chronostratigraphic understanding within the Jurassic‒Cretaceous to Cenozoic units. We extended the GAB geological framework to include the overlying LEB and UDF as well to better resolve the Cenozoic stratigraphy and structure and potential for hydrogeological connectivity. The new data and information fill recognised gaps and refine the previous 3D geological model of the entire GAB and extend it to the LEB and UDF region (Vizy & Rollet, 2023b). The updated 3D geological and hydrostratigraphic model provides a framework to integrate additional hydrogeological and rock property data. It assists in refining hydraulic relationships between aquifers within the GAB, LEB, UDF and provides a basis for developing more detailed hydrogeological system conceptualisations. The improved cross-jurisdictional chronostratigraphic understanding supports improvements to the common agreed terminology for Australian hydrogeological units and groundwater provinces between jurisdiction borders (http://www.bom.gov.au/water/groundwater/naf/). This enables the delivery of geologically and hydrogeologically consistent datasets to inform decision makers and the broader groundwater community in Australia. This abstract was submitted/presented to the 2023 Australasian Groundwater / New Zealand Hydrological Society (AGC NZHS) Joint Conference (https://www.hydrologynz.org.nz/events-1/australasian-groundwater-nzhs-joint-conference) References: Hannaford, C. and Rollet, N. 2023. Palynological data review of selected boreholes in the Great Artesian, Lake Eyre basins and Upper Darling Floodplain (part 2): Infilling data and knowledge gaps. Record 2023/27. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147173 McPherson, A., Rollet, N., Vizy, J., Kilgour, P. 2022a. Great Artesian Basin eastern recharge area assessment - northern Surat Basin airborne electromagnetic survey interpretation report. RECORD: 2022/017. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2022.017 McPherson, A., Buckerfield, S., Tan, K., Kilgour, P., Symington, N., Ray, A., Buchanan, S. 2022b. Developing (hydro)geological conceptual models to support improved groundwater management. The Upper Darling Floodplain Project, New South Wales. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147055 Norton, C. J. and Rollet, N. 2023. Regional stratigraphic correlation transects across the Great Artesian, Lake Eyre basins and Upper Darling Floodplain region (part 2): Infilling data and knowledge gaps. Record 2023/28. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147243 Szczepaniak, M., Rollet, N., Bradshaw, B, Lund, D., Iwanec, J., Bradey, K., Vizy, J., 2023. Western and central Eromanga and underlying basins seismic interpretation ‒ Data package. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/147900 Vizy, J. & Rollet, N. 2023a. Australian Borehole Stratigraphic Units Compilation (ABSUC) 2023 Version 1.0. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147641 Vizy, J. & Rollet, N., 2023b. 3D geological and hydrogeological surfaces update in the Great Artesian, Lake Eyre basins and Upper Darling Floodplain region (part 2): report and data package. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/148552 Wong, S.C.T., Hegarty, R.A., Pitt, L., Crowe, M.C., Roach, I., Nicoll, M., LeyCooper, Y., Hope, J., Bonnardot, M. 2023. Eastern Resources Corridor Airborne Electromagnetic Interpretation Data Package. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/147992

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This web service summarises salinity and water levels for the Adavale Basin located within the Adavale Basin region.

  • We are all the beneficiaries of glass - from the vessels that hold our drinks, fiber optics that carry our communications, and the solar panels that convert the sun’s energy into electricity, contributing to a greener future, to name a few. But did you know glass can also be made in nature? Dramatic natural events like lightning strikes, volcanic eruptions and meteorite impacts can all produce glass. We find beautiful evidence of this here on Earth…and also on the Moon! The value of glass has been recognized with the United Nations declaring 2022 to be the International Year of Glass. Subsequently the school student theme for Australia’s National Science Week follows suit. Join Geoscience Australia, the ACT Education Directorate and the ANU Research School of Earth Sciences to explore forms of natural glass.

  • This product is not dated and can be used for any year to promote Earth Science Week now and into the future. This printed double-sided colour bookmark (55mm x 180mm) has 3 simple Earth science facts on one side and a 'call to action' on the other to celebrate Earth Science Week in October. It also has contact information for Geoscience Australia.

  • This map is part of the AUSTopo - Australian Digital Topographic Map Series. It covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5 km on the ground) and comprises 516 maps. This is the largest scale at which published topographic maps cover the entire continent. Each standard map covers an area of approximately 1.5 degrees longitude by 1 degree latitude or about 150 kilometres from east to west and at least 110 kilometres from north to south. The topographic map shows approximate coverage of the sheets. The map may contain information from surrounding map sheets to maximise utilisation of available space on the map sheet. There are about 50 special maps in the series and these maps cover a non-standard area. Typically, where a map produced on standard sheet lines is largely ocean it is combined with its landward neighbour. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours (interval 50m), localities and some administrative boundaries. Coordinates: Geographical and MGA Datum: GDA94, GDA2020, AHD. Projection: Universal Traverse Mercator (UTM) Medium: Digital PDF download.

  • A rich trove of marine geophysical data acquired in the search for missing flight MH370 is yielding knowledge of ocean floor processes at a level of detail rare in the deep ocean. The tragic disappearance of Malaysian Airlines flight MH370 on 8 March 2014 has led to a deep ocean search effort of unprecedented scale and detail. Between June 2014 and June 2016, state-of-the-art shipboard multibeam echosounder (MBES) and sub-bottom profile data were collected in a ~255,000 km2 zone of the southeastern Indian Ocean. The arcuate, NE-SW oriented search swath (75 to 160 km wide) centers on Broken Ridge and extends ~2500 km from the eastern flank of Batavia Seamount to the Geelvinck Fracture Zone (Figure 1). Aircraft debris found along the shores of the western Indian Ocean is consistent with drift modelling that indicates an origin in the search area (https://www.atsb.gov.au/mh370/). The resultant dataset constitutes the largest MBES mapping effort for the Indian Ocean, representing about half the size of California, improving spatial resolution of the ocean floor in this region from an average of >5 km2 to <0.1 km2. Importantly, the new data provide the geospatial framework for the current phase of the search – deployment of deep-water, high-resolution acoustic and optical imaging instruments able to identify aircraft wreckage. <b>Citation:</b> Picard, K.,Brooke, B., and Coffin, M. F. (2017), Geological insights from Malaysia Airlines flight MH370 search, <i>Eos</i>, 98, https://doi.org/10.1029/2017EO069015. Published on 06 March 2017.

  • Categories  

    TOTAL MAGNETIC INTENSITY Total Magnetic Intensity (TMI) data measures variations in the intensity of the Earth's magnetic field, which includes the fields associated with the Earth's core and the magnetism of rocks in the Earth's crust. The data are 'reduced' to highlight those variations caused by the geology in the Earth's crust. TMI data can be used to interpret sub-surface geological structure and has applications in mineral, energy and groundwater studies. GRADIENT ENHANCED GRID The data for this grid were acquired as part of a horizontal magnetic gradient survey, which uses three alkali-vapour magnetometers to measure longitudinal and transverse gradients. These gradients allow for a 'gradient enhanced' grid of the TMI data to be produced with improved near-surface information and reduced noise (such as that arising from diurnal changes in the magnetic field). GRID METADATA Units: Nanotesla (nT); Cell size: 40 m ( degrees); Datum: EPSG:7844 Processing: Gradient enhanced. LINE METADATA Line spacing: 200 m; Line direction: 90 degrees; Total line-kilometres: 65504 km; Nominal flying height (above ground level): 80 m; Acquisition Start Date: 2023-05-21; Acquisition End Date: 2023-09-14;

  • Categories  

    TOTAL MAGNETIC INTENSITY Total Magnetic Intensity (TMI) data measures variations in the intensity of the Earth's magnetic field, which includes the fields associated with the Earth's core and the magnetism of rocks in the Earth's crust. The data are 'reduced' to highlight those variations caused by the geology in the Earth's crust. TMI data can be used to interpret sub-surface geological structure and has applications in mineral, energy and groundwater studies. GRADIENT ENHANCED GRID The data for this grid were acquired as part of a horizontal magnetic gradient survey, which uses three alkali-vapour magnetometers to measure longitudinal and transverse gradients. These gradients allow for a 'gradient enhanced' grid of the TMI data to be produced with improved near-surface information and reduced noise (such as that arising from diurnal changes in the magnetic field). REDUCTION TO POLE A Reduction to Pole (RTP) is applied to this grid to locate anomalies above the causative bodies, removing asymmetry caused by the inclination of the Earth's magnetic field. An RTP assumes that the anomalies are caused by induced magnetism (and remanent magnetism is not significant). GRID METADATA Units: Nanotesla (nT); Cell size: 40 m ( degrees); Datum: EPSG:7844 Processing: Gradient enhanced + RTP. LINE METADATA Line spacing: 200 m; Line direction: 90 degrees; Total line-kilometres: 65504 km; Nominal flying height (above ground level): 80 m; Acquisition Start Date: 2023-05-21; Acquisition End Date: 2023-09-14;

  • Categories  

    TOTAL MAGNETIC INTENSITY Total Magnetic Intensity (TMI) data measures variations in the intensity of the Earth's magnetic field, which includes the fields associated with the Earth's core and the magnetism of rocks in the Earth's crust. The data are 'reduced' to highlight those variations caused by the geology in the Earth's crust. TMI data can be used to interpret sub-surface geological structure and has applications in mineral, energy and groundwater studies. GRADIENT ENHANCED GRID The data for this grid were acquired as part of a horizontal magnetic gradient survey, which uses three alkali-vapour magnetometers to measure longitudinal and transverse gradients. These gradients allow for a 'gradient enhanced' grid of the TMI data to be produced with improved near-surface information and reduced noise (such as that arising from diurnal changes in the magnetic field). REDUCTION TO POLE A Reduction to Pole (RTP) is applied to this grid to locate anomalies above the causative bodies, removing asymmetry caused by the inclination of the Earth's magnetic field. An RTP assumes that the anomalies are caused by induced magnetism (and remanent magnetism is not significant). FIRST VERTICAL DERIVATIVE A First Vertical Derivative (1VD) is applied to this grid which enhances the short-wavelength component of the field. GRID METADATA Units: Nanotesla per metre (nT/m); Cell size: 40 m ( degrees); Datum: EPSG:7844 Processing: Gradient enhanced + RTP + 1VD. LINE METADATA Line spacing: 200 m; Line direction: 90 degrees; Total line-kilometres: 65504 km; Nominal flying height (above ground level): 80 m; Acquisition Start Date: 2023-05-21; Acquisition End Date: 2023-09-14;