From 1 - 10 / 73
  • The development of climate change adaptation policies must be underpinned by a sound understanding of climate change risk. As part of the Hyogo Framework for Action, governments have agreed to incorporate climate change adaptation into the risk reduction process. This paper explores the nature of climate change risk assessment in the context of human assets and the built environment. More specifically, the paper's focus is on the role of spatial data which is fundamental to the analysis. The fundamental link in all of these examples is the National Exposure Information System (NEXIS) which has been developed as a national database of Australia's built infrastructure and associated demographic information. The first illustrations of the use of NEXIS are through post-disaster impact assessments of a recent flood and bushfire. While these specific events can not be said to be the result of climate change, flood and bushfire risks will certainly increase if rainfall or drought become more prevalent, as most climate change models indicate. The second example is from Australia's National Coastal Vulnerability Assessment which is addressing the impact of sea-level rise and increased storms on coastal communities on a national scale. This study required access to or the development of several other spatial databases covering coastal landforms, digital elevation models and tidal/storm surge. Together, these examples serve to illustrate the importance of spatial data to the assessment of climate change risk and, ultimately, to making informed, cost-effective decisions to adapt to climate change.

  • The National Exposure Information System (NEXIS) project is an initiative of Geoscience Australia in response to the Australian Government's research priority of safeguarding Australian communities from natural hazards, critical infrastructure failures and policy development. The governmental priority urges the implementation of a 'nationally consistent system of data collection, research and analysis to ensure a sound knowledge-base on natural disasters and disaster mitigation'. The infrastructure exposure definition and development framework suitable for multi hazards and climate change impact analysis is highly complex. NEXIS aims to meet the challenge by collecting, collating and maintaining nationally consistent exposure information at the individual building level. This requires detailed spatial analysis and the integration of available demographic, structural and statistical data for various sectors. The system integrates data from several national spatial databases, such as the Geocoded National Address File, the Property Cadastre, Australian Bureau of Statistics (ABS) census data, and building data from Australian state governments. It also includes post disaster survey information and data from several infrastructure agencies and local government bodies. NEXIS provides a representative assessment of asset exposure to several hazard models which can be aggregated to an appropriate level from State to mesh block level for the required application. By integrating the information with the decision-support tools of alert systems and early warning, it can enable the rapid forecasting of the impacts due to various hazards (infrastructure damage and casualties). Currently it is being used for tactical response for emergency managers and strategic policy and planning development. In addition to enabling research in Geoscience Australia's risk and impact analysis projects, it supports several government initiatives across the departments and national committees.

  • In 2008, the Australian Parliament debated and passed the first national legislation to establish a title system of access and property rights for greenhouse gas (CO2) storage in offshore waters - the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (the Act). The Act provides for petroleum titles and greenhouse gas storage titles to coexist. To manage possible interactions between petroleum and CO2 storage operations, the Act introduced a test to determine whether activities under one title would pose a significant risk of a significant adverse impact (SROSAI test) on pre-existing rights and assets under the other title. Where petroleum and CO2 storage projects are proposed in the same area, the Act provides for commercial agreements between petroleum and CO2 storage proponents. It is only in the absence of any such commercial agreements that the regulator will have to decide whether an activity under one title would pose a significant risk of a significant adverse impact on the operations within the other title area. The SROSAI test is based on three core parameters: - the probability of the occurrence of an adverse impact; - the cost of the adverse impact on the project; and - the total resource value of the project. In estimating the cost of an adverse impact the regulator will take into consideration whether the adverse impact will result in: - any increase in capital or operating costs; - any reduction in rate of recovery of petroleum or rate of injection of CO2; - any reduction in the quantity of the petroleum to be recovered or CO2 stored. Safety and environmental impacts would be considered in estimating costs, only if those impacts would contribute to an increase in capital or operating costs, or reduction in petroleum recovery or CO2 injection. Etc

  • The sensitivity of the Jaiswal and Wald (Earthq. Spectra, 2010) empirical earthquake fatality model is evaluated relative to the model space for a suite of macroseismic intensity prediction methods. The relative difference between intensity prediction methods is shown through the use of self-organizing maps to visualize high-dimensional ground shaking data in a two-dimensional space. Among all the macroseismic intensity prediction methods evaluated, there is significant variability in the resulting loss estimates for an earthquake of given source parameters with losses being most sensitive to those intensity models that predict high near-source ground shaking. Because the empirical fatality models evaluated herein are based on a consistent suite of ground-motion model inputs, application of the fatality models with other intensity prediction methods may result in undesirable outcomes. Consequently, it is recommend that empirical loss models be calibrated directly with hazard inputs used in the proposed loss assessment methodology.

  • Hydrometeorological events make up or contribute to a majority of disasters in Australia and around the world. Scientists expect climate change will accelerate the frequency and intensity of these events in the future. Information on the location and characteristics of the built and social environment combined with hazard modelling and spatial analysis can facilitate the identification of buildings, people and infrastructure exposed to a particular natural hazard event. This information informs evidence based decision making and future planning to aid in the preparedness, response and recovery to severe hazard events. In Australia, the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). In 2006 GA embarked on the development of NEXIS in response to the Council of Australian Governments (COAG) reform commitment on Australian's ability to manage natural disasters and other emergencies. The COAG commitment called for the establishment of a 'nationally consistent system of data collection, research and analysis to ensure a sound knowledge base on natural disasters and disaster mitigation' (DOTARS 2002). NEXIS database contains information on buildings, people, businesses and infrastructure and is derived from publicly available demographic, structural, economic and statistical data. Exposure profiles contain information on: building type, size, construction materials, age, replacement costs and population demographics for all residential, commercial and industrial buildings in Australia. Aggregated exposure information underpins risk assessment, emergency management, climate change adaptation, urban planning, insurance industry and research to help assist evidence based decision making. NEXIS development and operationalisation is crucial to support the decision makers and underpins community safety, emergency management and disaster risk reduction initiatives Australia This paper will discuss the development of NEXIS and its application in several national projects with the Department of Climate Change Energy and Efficiency (DCCEE) in Australia and recent national disaster impacts assessments on: Queensland tropical cyclone Yasi, Victoria bushfires and the Queensland floods.

  • Developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research considers three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region.

  • An increase in the frequency and intensity of storms, coastal flooding, and spread of disease as a result of projected climate change and sea-level rise is likely to damage built environments and adversely affect a significant proportion of Australia's population. Understanding the assets at risk from climate change hazards is critical to the formulation of adaptation responses and early action is likely to be the most cost effective approach to managing the risk. Understanding the level of exposure of assets, such as buildings, lifeline utilities and infrastructure, under current and future climate projections is fundamental to this process. The National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess climate change impacts. It provides residential, business and infrastructure exposure information derived from several fundamental datasets. NEXIS is also expanding to include institutions (such educational, health, emergency, government and community buildings) and lifeline support infrastructure exposure. It provides spatial exposure data in GIS format at a building level and is often provided to clients for an area of interest. It is also designed to predict future exposure for climate change impact analysis. NEXIS is currently sourcing more specific datasets from various data custodians including state and local governments along with private data providers. NEXIS has been utilised in various climate change impact projects undertaken by CSIRO, the Department of Climate Change (DCC), the Department of Environment, Water, Heritage and the Arts (DEWHA), and several universities. Examples of these projects will be outlined during the presentation.

  • Climate change is expected to exacerbate a range of natural hazards in Australia leading to more severe community impacts in the future. There is a need to adapt to a changing hazard environment and increasing community exposure in regions most likely influenced by climate change. Through this paper GA develops a methodology for projecting Australian communities in a spatial sense into the future. The application of this methodology is demonstrated in a case study. In order to address the fact that the impacts of climate change are expected to be more evident in the second half of this century, this model was to extend beyond the 30 year limitation of finer scale population projections, dwelling projections and development plans.

  • 11-5413 The Probabilistic Volcanic Ash - Hazard Map movie describes how you construct a probabilistic hazard map for volcanic ash, using an example scenario from GA's volcanic ash modelling work in West Java, Indonesia. The target audience is other govt. agencies both national and international, and the general public. The 3.3 minute movie uses 3D Max animations and 2D affects, has narration and production music. The narration will also be done in Bahasa Indonesian, at a later date.

  • Full Version - shows orthographic and fly-through sequence for each of 5 scenarios with a combined max. inundation outline fly-through at end. Description. - Tropical Cyclone Alby passed close to the southwest corner of West Australia on April 4th 1978. Large waves and a storm surge generated by the northerly winds caused substantial coastal erosion along the Lower West coast particularly in the Geographe Bay area. Low-lying areas at Bunbury and Busselton were flooded, forcing the evacuation of many homes including the Bunbury Nursing Home. An approximate 1.1 m storm surge at Busselton caused the tide to peak at 2.5 m about 1 m above the highest astronomical tide. The Busselton Jetty was severely damaged. At Fremantle the surge was about 0.6 m causing a high tide of 1.8 m, about 0.5 m above the highest astronomical tide. [From BOM - http://www.bom.gov.au/weather/wa/cyclone/about/perth/alby.shtml - Retrieved 21/01/2010] This movie displays the results of a number of simulated storm surge events caused by an equivalent storm to Tropical Cyclone Alby on the current built terrain of Mandurah, and projected 2100 coastline with 0.5, 0.8 and 1.1m rises in sea level. Scenario A TC Alby equivalent at current sea level Scenario B Worst case TC Alby equivalent with current sea level Scenario C Worst case TC Alby equivalent in 2100 with 0.5m sea level rise Scenario D Worst case TC Alby equivalent in 2100 with 0.8m sea level rise Scenario E Worst case TC Alby equivalent in 2100 with 1.1m sea level rise