potassium
Type of resources
Keywords
Publication year
Service types
Topics
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Broome, WA, 2009 (North Canning 1) (P1211), radiometric line data, AWAGS levelled were acquired in 2009 by the WA Government, and consisted of 76474 line-kilometres of data at 400m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Mt Anderson McLarty Hills North Canning 3 Doserate Grid Geodetic has a cell size of 0.00081 degrees (approximately 88m) and shows the terrestrial dose rate of the Mt Anderson - McClarty Hills, WA, 2009 (North Canning 3). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 99192 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00083 degrees (approximately 90m) and shows potassium element concentration of the Yampi - Derby, WA, 2009 (North Canning 2) in units of percent (or %). The data used to produce this grid was acquired in 2009 by the WA Government, and consisted of 68011 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Charnley Doserate Grid Geodetic has a cell size of 0.00042 degrees (approximately 45m) and shows the terrestrial dose rate of the West Kimberley (Prince Regent - Montague - Charnley), WA,2011. The data used to produce this grid was acquired in 2011 by the WA Government, and consisted of 145084 line-kilometres of data at a line spacing between 200m and 800m, and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Prince Regent Montague Doserate Grid Geodetic has a cell size of 0.00167 degrees (approximately 182m) and shows the terrestrial dose rate of the West Kimberley (Prince Regent - Montague - Charnley), WA,2011. The data used to produce this grid was acquired in 2011 by the WA Government, and consisted of 145084 line-kilometres of data at a line spacing between 200m and 800m, and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00083 degrees (approximately 88m) and shows potassium element concentration of the Morris-Cobb, WA, 2010 (South Canning 2) in units of percent (or %). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 134843 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA East Canning 3 Doserate Grid Geodetic has a cell size of 0.00083 degrees (approximately 89m) and shows the terrestrial dose rate of the Stansmore, WA, 2010 (East Canning 3). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 122578 line-kilometres of data at a line spacing between 200m and 400m, and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA East Canning 3 East Doserate Grid Geodetic has a cell size of 0.00042 degrees (approximately 45m) and shows the terrestrial dose rate of the Stansmore, WA, 2010 (East Canning 3). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 122578 line-kilometres of data at a line spacing between 200m and 400m, and 50m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00083 degrees (approximately 88m) and shows potassium element concentration of the Madley-Herbert, WA, 2010 (South Canning 1) in units of percent (or %). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 96079 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Forrest, WA, 2010 (Eucla Basin 5N) (P1223), radiometric line data, AWAGS levelled were acquired in 2010 by the WA Government, and consisted of 73785 line-kilometres of data at 200m line spacing and 50m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.