From 1 - 10 / 1646
  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSWA Eucla Basin 5 South Eucla Doserate grid geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Eucla, WA, 2010 (Eucla Basin 5S). The data used to produce this grid was acquired in 2010 by the WA Government, and consisted of 80425 line-kilometres of data at a line spacing between 200m and 400m, and 50m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Murray Basin - Kerang B, Vic, 1980 (GSV0191) (P1505), radiometric line data, AWAGS levelled were acquired in 1980 by the VIC Government, and consisted of 45745 line-kilometres of data at 250m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    This GSV Heathcote Vic pot tho ura totg 4band radiometric grid geodetic is an airborne-derived radiometric Potassium, Thorium and Uranium data over a sun shaded total count radiometric data for the Heathcote, Vic, 1988 (GSV0360). The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Heathcote Vic pot tho ura totg 4band radiometric grid geodetic has a cell size of 0.0005 degrees (approximately 50m). The data used to produce this grid was acquired in 1988 by the VIC Government, and consisted of 3040 line-kilometres of data at 200m line spacing and 70m terrain clearance. The grid was produced by applying the colours red to the Potassium ground concentration, green to the Thorium concentration and blue to the Uranium concentration. The colours were clipped to a 99% linear scale. These colours were transparent over a shaded Total Count. This clipping will necessarily introduce some artefacts into the ratio grids in areas of very low radioelement concentrations. The 3-band image was superposed on the sun shaded TC grid of the same survey to produce the final image.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Heathcote, Vic, 1988 (GSV0360) (P1520), radiometric line data, AWAGS levelled were acquired in 1988 by the VIC Government, and consisted of 3040 line-kilometres of data at 200m line spacing and 70m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Cavendish, Vic, 1989 (GSV0363) (P1521), radiometric line data, AWAGS levelled were acquired in 1989 by the VIC Government, and consisted of 4532 line-kilometres of data at 250m line spacing and 70m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00042 degrees (approximately 44m) and shows uranium element concentration of the Rason-Throssel merge, 1991-1998 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1991 by the WA Government, and consisted of 107758 line-kilometres of data at a line spacing between 200m and 400m, and 60m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00083 degrees (approximately 89m) and shows thorium element concentration of the Mt Webb-Wilson-Webb merge, 1995-1998 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1995 by the WA Government, and consisted of 89949 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00083 degrees (approximately 89m) and shows uranium element concentration of the Mt Webb-Wilson-Webb merge, 1995-1998 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1995 by the WA Government, and consisted of 89949 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00049 degrees (approximately 50m) and shows thorium element concentration of the GSNSW Exploration NSW Area J, Cobar-Nymagee merge, 1999 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 70181 line-kilometres of data at 250m line spacing and 60m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00083 degrees (approximately 91m) and shows thorium element concentration of the Hann River-Walsh merge, 1991 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1991 by the QLD Government, and consisted of 61810 line-kilometres of data at 400m line spacing and 100m terrain clearance.