From 1 - 10 / 33
  • <b>This record was retired 29/03/2022 with approval from S.Oliver as it has been superseded by eCat 132317 GA Landsat 8 OLI/TIRS Analysis Ready Data Collection 3</b> The PQ25 product facilitates interpretation and processing of Surface Reflectance (SR-N/NT), Fractional Cover 25 (FC25) and all derivative products. PQ25 is an assessment of each image pixel to determine if it is an unobscured, unsaturated observation of the Earth's surface and also whether the pixel is represented in each spectral band. The PQ product allows users to produce masks which can be used to exclude pixels which don't meet their quality criteria from analysis . The capacity to automatically exclude such pixels is essential for emerging multi-temporal analysis techniques that make use of every quality assured pixel within a time series of observations. Users can choose to process only land pixels, or only sea pixels depending on their analytical requirements, leading to enhanced computationally efficient.

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on derived or value-added products. Example products include: Fractional Cover (FC), Australian Geographic Reference Image (AGRI), and InterTidal Extents Model (ITEM) etc.

  • 1. Band ratio: (B10+B12)/B11 Blue is low gypsum content. Red is high gypsum content. Accuracy: Very Low: Strongly complicated by dry vegetation and often inversely correlated with quartz-rich materials. Affected by discontinuous line-striping. Use in combination with FeOH product which is also sensitive to gypsum. Geoscience Applications: Useful for mapping: (1) evaporative environments (e.g. salt lakes) and associated arid aeolian systems (e.g. dunes); (2) acid waters (e.g. from oxidising sulphides) invading carbonate rich materials including around mine environments; and (3) hydrothermal (e.g. volcanic) systems.

  • 1. Band ratio: B1/B4 Blue is low abundance, Red is high abundance (potentially includes carbon black (e.g. ash), magnetite, Mn oxides, and sulphides in unoxidised envornments Useful for mapping: (1) magnetite-bearing rocks (e.g. BIF); (2) maghemite gravels; (3) manganese oxides; (4) graphitic shales. Note 1: (1) and (4) above can be evidence for "reduced" rocks when interpreting REDOX gradients. Combine with AlOH group Content (high values) and Composition (high values) products, to find evidence for any invading "oxidised" hydrothermal fluids which may have interacted with reduced rocks evident in the Opaques index product.

  • This collection contains processing environments for use by external users of the Australian Geoscience Data Cube (AGDC).

  • B6/B5 (potential includes: pyrophyllite, alunite, well-ordered kaolinite) Blue is low content, Red is high content Useful for mapping: (1) different clay-type stratigraphic horizons; (2) lithology-overprinting hydrothermal alteration, e.g. high sulphidation, "advanced argillic" alteration comprising pyrophyllite, alunite, kaolinite/dickite; and (3) well-ordered kaolinite (warmer colours) versus poorly-ordered kaolinite (cooler colours) which can be used for mapping in situ versus transported materials, respectively.

  • 1. Band ratio: B4/B3 Blue is low abundance, Red is high abundance (1) Exposed iron ore (hematite-goethite). Use in combination with the "Opaques index" to help separate/map dark (a) surface lags (e.g. maghemite gravels) which can be misidentified in visible and false colour imagery; and (b) magnetite in BIF and/or bedded iron ore; and (3) Acid conditions: combine with FeOH Group content to help map jarosite which will have high values in both products. Mapping hematite versus goethite mapping is NOT easily achieved as ASTER's spectral bands were not designed to capture diagnostic iron oxide spectral behaviour. However, some information on visible colour relating in part to differences in hematite and/or goethite content can be obtained using a ratio of B2/B1 especially when this is masked using a B4/B3 to locate those pixels with sufficient iro oxide content.

  • Band ratio: B3/B2 Blue is low content Red is high content Use this image to help interpret the amount of "obscuring/complicating" green vegetation cover.

  • 1. Band ratio: B2/B1 Blue-cyan is goethite rich, Green is hematite-goethite, Red-yellow is hematite-rich (1) Mapping transported materials (including palaeochannels) characterised by hematite (relative to geothite). Combine with AlOH composition to find co-located areas of hematite and poorly ordered kaolin to map transported materials; and (2) hematite-rish areas in drier conditions (eg above the water table) whereas goethite-rich in wetter conditions (eg at/below the water or areas recently exposed). May also be climate driven.

  • 1. Band ratio: B11/(B10+B12) Blue is low quartz content Red is high quartz content Geoscience Applications: Use in combination with Silica index to more accurately map "crystalline" quartz rather than poorly ordered silica (e.g. opal), feldspars and compacted clays.