From 1 - 10 / 33
  • N.B., The DGIR grids, A7 and B7, were updated on 20 October 2020 after low amplitude, short wavelength artefacts were found in the original grids. If you have previously downloaded either of the DGIR grids, Geoscience Australia recommends you download the new versions of these grids (i.e., A7_2019_DGIR_v2 and B7_2019_GDIR_v2). The other grids were not updated since the artefacts are not present in these grids. This series of grids represent the combination of gravity data stored in the Australian National Gravity Database (ANGD) as of September 2019, Airborne Gravity/gravity gradiometry data in the National Australian Geophysical Database (NAGD), and the Global Gravity Grid from National Oceanic and Atmospheric Administration (NOAA). All the grids have a cell size of 400 metres, an improvement from 800 metres. Gravity data have been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940’s to the present day. Station spacing varies from approximately 11 km down to less than 1 km, with major parts of the continent having station spacing between 2.5 and 7 km. The ANGD contains over 1.8 million observations, of which nearly 1.4 million were considered suitable for inclusion in the calculation of this grid. The 2016 versions of the Australian National Gravity Grids were masked to the coastline. In contrast, in 2019 we chose to supplement the onshore data with offshore data that were sourced from v28.1 of the Global Gravity grid developed using data from the Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration (NOAA), and National Geospatial-Intelligence Agency (NGA) at Scripps Institution of Oceanography, University of California San Diego. This provides valuable context to the onshore ground gravity data. Airborne Gravity Gradiometry surveys totalling 345,000 line km and 106,000 line km of Airborne Gravity Gradiometry were included to provide better resolution to areas where ground gravity data was not of a suitable quality. These grids were produced by Geoscience Australia and the Institute of Geological and Nuclear Sciences Limited (GNS Science). The grids are organised into 2 series of 3 gravity and 2 supplementary grids. The gravity grids provide Free Air Anomaly (FAA), Complete Bouguer Anomaly (CBA), and De-trended Global Isostatic Residual (DGIR) values. The supplementary grids provide the elevation values that define the observation surface for the relevant set of gravity grids, referenced to the geoid and GRS80 ellipsoid for the GDA94 datum. A more complete description of the grids and their details are located in the explanatory notes. The “A” Series grids were produced from a combination of ground gravity data for Australian onshore locations, gravity data derived from satellite altimetry for offshore locations, and gravity data from the EGM2008 global gravity model for the onshore locations in countries other than Australia. The “B” Series grids includes the gravity data used in the A Series grids, with the addition of data from a number of airborne gravity and airborne gravity gradiometer surveys. All of the data in the “B” series grids (i.e., ground, sea surface and airborne) were vertically continued to a smooth drape surface with a minimum terrain clearance of 250m. The grids are available to download as a complete package, which includes all grids, the explanatory notes, and associated documentation. Each grid is also available as a discrete dataset for download, including the explanatory notes and other documentation. The explanatory notes are also available as a separate download via its own publication entry. This series of grids represent the combination of gravity data stored in the Australian National Gravity Database (ANGD) as of September 2019, Airborne Gravity/gravity gradiometry data in the National Australian Geophysical Database (NAGD), and the Global Gravity Grid from National Oceanic and Atmospheric Administration (NOAA). N.B., The DGIR grids, A7 and B7, were updated on 20 October 2020 after low amplitude, short wavelength artefacts were found in the original grids. If you have downloaded either of the DGIR grids prior to 20 October 2020, Geoscience Australia recommends you download the new versions of these grids (i.e., A7_2019_DGIR_v2 and B7_ 2019_GDIR_v2). The other grids were not updated since the artefacts are not present in these grids. In addition, a copy of the Point Located Data is provided for public download. This dataset contains all publicly available ground gravity data as of September 2019. Clients wishing to use only the data included in the national grids can filter the dataset using the “gridding_flag” field where it equals one (“1”). The flag has been updated to reflect the changes resulting from creating the grids.

  • Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the East Kimberley, onshore Bonaparte Basin as part of the Exploring for the Future (EFTF) program. Reprocessing of these data occurred between September 2017 and May 2018. Exploring for the Future (<a href="https://www.ga.gov.au/eftf/">https://www.ga.gov.au/eftf</a>) was a $100.5 million four-year (2016-20), Australian Government-funded program to provide a holistic picture of the potential mineral, energy and groundwater resources in northern Australia. The program has delivered new geoscience data, knowledge and decision support tools to support increased industry investment and sustainable economic development across the north. Groundwater is a critical resource that accounts for most water used across northern Australia. The groundwater component of the EFTF program focused on addressing groundwater resource knowledge gaps, to support future opportunities for economic development via irrigated agriculture, extractive industries and increased security of community water supplies. Through collaboration with State and Territory partners, the program undertook targeted regional investigations of groundwater systems and assessments of groundwater potential more broadly across the region. The program's activities, implemented by Geoscience Australia, involved application of innovative geoscience tools to collect, integrate and analyse a range of data. It includes geological and hydrogeological data, airborne and ground-based geophysical and hydrogeochemical surveys, remote sensing data as well as stratigraphic drilling. The new data and better understanding of groundwater systems also helps inform decision making about groundwater use to protect environmental and cultural assets. These outcomes strengthen investor confidence in resources and agricultural projects by de-risking groundwater in northern Australia. The package contains reprocessed data from ten surveys acquired between 1980 and 1997. In total 53 lines were reprocessed covering a fold area of approximately 618.9 line kilometres, with the objective to produce a modern industry standard 2D land seismic reflection dataset where possible from a selection of multiple legacy 2D data. The purpose of the reprocessing was twofold: 1) To image the near surface structural and stratigraphic configuration for linking to AEM data that is available in the Bonaparte Basin; and 2) To image the structure and stratigraphic architecture of the Paleozoic Bonaparte Basin. The dataset exhibits significant improvements in stack response in most of the reprocessed lines when final and legacy stacks were compared, especially in the shallow section. Optimum results were obtained from the noise attenuation workflows. A minimum processing flow was applied to BWA80, BWA81, and line BNT87-404 lines to avoid any signal leakage throughout the processing. Final data were delivered as minimum phase (care should be taken not to interpret zero crossings as geological boundaries), and final velocities produced a good match with the well checkshot velocities. The processing report from Down Under Geophysics is available for download with this release. Raw and processed data are available on request from <a href="mailto:clientservices@ga.gov.au&body=Ref: eCat 135578">clientservices@ga.gov.au</a> - Quote eCat# 135578. Processed stack SEG-Y files and ancillary data are available for download from this web page.

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, the Onshore Energy Project undertook a study of petroleum prospectivity of the onshore Officer Basin in South Australia and Western Australia. Yowalga 3 well in Western Australia was selected based on the occurrence of gas and oil shows reported in the well completion report. Sampling of cuttings and cores was done at Geoscience Australia's Petroleum Data Repository in Canberra. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal to extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Yowalga 3, FIS analysis was performed on 698 cuttings and 30 cores between 140 metres and 3526 metres base depth, together with 22 samples prepared for TS. To support this study, lithostratigraphic tops were compiled by Geoscience Australia. The results of the study are found in the accompanying documents. Note: Yowalga 3 results are in two parts, Part 1 and Part 2, since the total number of samples exceeded to maximum number of samples (575) for a Schlumberger well report. Part 1 has cuttings by increasing depth and Part 2 has the remaining cuttings then the cores.

  • <div>Geoscience Australia’s Onshore Basin Inventories program provides a whole-of-basin inventory of geology, energy systems, exploration status and data coverage of onshore Australian basins. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins and Volume 2 expands this list to include the Officer, Perth and onshore Canning basins. These reports provide a single point of reference and create a standardised national inventory of onshore basins. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory identifies critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. Under Geoscience Australia’s Exploring for the Future (EFTF) program, six new onshore basin inventory reports will be delivered. </div><div>&nbsp;</div><div>These reports will be supported by selected value-add products that aim to address identified data gaps and evolve regional understanding of basin evolution and prospectivity. Petroleum system modelling is being undertaken in selected basins to highlight the hydrocarbon potential in underexplored provinces, and seismic reprocessing and regional geochemical studies are underway to increase the impact of existing datasets. The inventories are supported by the ongoing development of the nationwide source rock and fluids atlas, accessed through Geoscience Australia’s Exploring for the Future Data Discovery Portal, which continues to improve the veracity of petroleum system modelling in Australian onshore basins.</div><div>&nbsp;</div><div>In summarising avenues for further work, the Onshore Basin Inventories program has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF work program. Here, we provide an overview of the current status of the Onshore Basin Inventories, with emphasis on its utility in shaping EFTF data acquisition and analysis, as well as new gap-filling data acquisition</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)

  • As part of the Onshore Energy Systems Group’s program, late gas (methane) and compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the data required to access the shale gas potential of source rocks from the Georgina Basin, Australia.

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments. The first phase of the EFTF program (2016-2020) aimed to drive industry investment in resource exploration in frontier regions of northern Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. One key discovery was the identification of a large sedimentary depocentre concealed beneath the Cambrian Georgina Basin. This depocentre, up to 8 km deep, was termed the ‘Carrara Sub-basin’ by Geoscience Australia. It is interpreted to contain thick sequences of Proterozoic rocks, broadly equivalent to rocks of the greater McArthur Basin (Northern Territory) and northern Lawn Hill Platform and Mount Isa Province (Queensland), known to be highly prospective for sediment-hosted base metals and unconventional hydrocarbons. In order to test geological interpretations in the Carrara Sub-basin, the South Nicholson National Drilling Initiative (NDI) Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC managing of the drilling operation. NDI Carrara 1 is the first drill hole to intersect Proterozoic rocks of the Carrara Sub-basin. It reached a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics. Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1. These analyses include geochronology, isotopic studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity, and petroleum systems investigations. To increase the understanding of the petroleum potential, molecular hydrogen and helium potential of sedimentary and basement rocks, Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal to extent of oil trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For NDI Carrara 1, FIS analysis was performed on 86 cuttings between 18 m and 282 m base depth and 342 cores between 283.9 m and 1750.45 m base depth, together with 27 samples prepared for TS and 4 samples for MT. To support this study, lithostratigraphic tops were interpreted and compiled by Geoscience Australia. The results of the study are found in the accompanying documents.

  • Australia’s longest onshore seismic line (18GA-KB1) across the southern Canning Basin informs resource evaluation of the frontier Kidson Sub-basin and Waukarlycarly Embayment. The Kidson Sub-basin covers 91 000 km2 and has a sag basin architecture. Preliminary interpretation of the seismic data indicates that the sedimentary basin is approximately 6 km deep, and includes a conformable package of Ordovician–Devonian siliciclastic, carbonate and evaporite facies of exploration interest. Located in the western end of the seismic line, the newly drilled deep stratigraphic well Waukarlycarly 1 penetrated 2680.53 m from the rotary table of Cenozoic and Paleozoic strata in the Waukarlycarly Embayment. This abstract reviews the Larapintine petroleum systems and discusses their possible extension into this frontier region. Recently published geochemical analyses of source rocks, oils and gases produced from exploration wells are coupled with new data on fluid inclusion gases (FIGs) from sedimentary sections in untested petroleum wells to provide correlation to hydrocarbons migrating within data-poor areas of the basin. Amplitude anomalies on the seismic line suggest the possibility of gas in the Waukarlycarly Embayment. Integration of the seismic derivative data with the results of the FIG analyses have determined the widespread generation of gas from Paleozoic sources within the Canning Basin, extending the spatial extent of the three petroleum systems described from the Lennard Shelf, Fitzroy Trough and Broome Platform. <b>Citation:</b> Carr, L.K., Edwards, D.S., Southby, C. Henson, P., Haines, P., Normore, L., Zhan, A., Brooks, D., MacFarlane, S., Boreham, C.J., Grosjean, E., Mory A.J., Wang, L. and Gunning, M-E., 2020. Kidson Sub-basin seismic survey and Waukarlycarly 1 stratigraphic well: an acquisition program for evaluating Canning Basin petroleum systems. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>Geoscience Australia’s Onshore Basin Inventories project provides a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage of hydrocarbon-prone onshore Australian sedimentary basins. Two existing volumes cover many central and north Australian onshore basins, providing a single point of reference and creating a standardised national basin inventory. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory reports identify critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. </div><div><br></div><div>Under Geoscience Australia’s Exploring for the Future (EFTF) program, several new onshore basin inventory reports are being delivered. The next releases include the Adavale Basin of southern Queensland and a compilation of Australia’s Mesoproterozoic basins. These reports are supported by value-add products that address identified data gaps and evolve regional understanding of basin evolution and prospectivity, including petroleum systems modelling, seismic reprocessing and regional geochemical studies. The Onshore Basin Inventories project continues to provide scientific and strategic direction for pre-competitive data acquisition under the EFTF work program, guiding program planning and shaping post-acquisition analysis programs.<br> <b>Citation: </b>Bailey Adam H. E., Carr Lidena K., Korsch Russell (2023) Australia’s Onshore Basin Inventories – foundational knowledge synthesis for better design of precompetitive data acquisition. <i>The APPEA Journal </i><b>63</b>, S209-S214. https://doi.org/10.1071/AJ22045

  • <div><strong>Conclusions</strong>&nbsp;</div><div><br></div><div>The NW NT Seismic Survey (L214) was designed to image the underexplored Proterozoic Birrindudu Basin and adjacent regions, including the highly prospective Tanami region. In an area of very limited seismic coverage, the acquisition of ~900km of deep crustal seismic data has vastly improved the seismic coverage through this region. &nbsp;The new dataset will be available as both raw and processed data files from the Geoscience Australia website in the future.</div><div><br></div>Abstract presented at the 2024 Annual Geoscience Exploration Seminar (AGES)

  • This is a collection of continuous seismic records gathered by temporal and semi-permanent seismic deployments where real-time data transmission was not available. Time spans vary from half an hour to more than a year depending on the purpose of the survey. Description of the employed instrumentation and array constellations can be found in the accompanied material. <b>Value: </b>Passive seismic data contains records of soil vibration due to the natural earth movements, ocean, weather, and anthropogenic activities. This data is used in ongoing research to infer national lithospheric structure from depth of a few meters to a hundred kilometres. Derived models are an important source of information for assessment of resource potential and natural hazard. <b>Scope: </b>Over time, surveys have been focused on areas of economic interest, current work of the Australian Passive Seismic Array Project (AusArray) is seeking to create a grid pattern, spaced ~55 km apart, and complemented by semi-permanent higher sensitivity broadband seismic stations. For more information about AusArray click on the following URL: <a href="https://www.ga.gov.au/eftf/minerals/nawa/ausarray">https://www.ga.gov.au/eftf/minerals/nawa/ausarray</a> <b>Data from phase 1 are available on request from clientservices@ga.gov.au - Quote eCat# 135284</b>