From 1 - 10 / 1428
  • Legacy product - no abstract available

  • This dataset is part of a digital geological map of the Granites-Tanami Block which Australian Geological Survey Organisation has prepared by joining together as a seamless coverage 15 of the 1:250 000 geological maps which cover the province.The data layers in the digital map include geology, faults, lineaments structural data, mineral deposits and Australian Geological Survey Organisation drill hole locations. The digital data is available in Arcinfo/ Arcview or Mapinfo format. Topographic and cultural layers are not included: these can be purchased separately from AUSLIG.

  • This map shows copper locations by Event, Type and Status. It also shows copper regions and copper occurrences that fall within these regions. The map includes a Time-Space-Event chart, and pie charts.

  • Predictive mineral discovery is concerned with the application of a whole of system process understanding to mineral exploration as opposed to an empirical deposit type approach. A mineral system process understanding can be derived from a consideration of five key questions, namely what is/are the: 1) geodynamic setting; 2) architecture; 3) sources and reservoirs; 4) drivers and pathways, and; 5) depositional mechanisms. The answers to these questions result in the identification of critical processes necessary for the function of a mineral system within a particular terrane, and permit the development of a targeting model. In this contribution we identify district scale critical orogenic gold mineral system processes for the late Archaean eastern Yilgarn Craton of Western Australia. During the geodynamic history of a terrane the critical processes which result in mineralisation change with time resulting in variations in mineralisation style. Proxies for critical processes have been mapped in an integrated GIS and are termed mappable mineral system process proxies (or MMSPP). In recognition of this, three separate time slices and a geochemical theme were analysed. Each MMSPP is given a weighting factor (WF) which reflects the spatial accuracy/coverage of the data and process criticality. For each theme/time-slice, a separate prospectivity map was created by summing the overlay or union of the spatial extent of each MMSPP, and adding the WF. A final target or prospectivity map was generated by a union of the four theme/time-slice prospectivity maps, and is tested against the known major deposits. The map 'discovered' the main gold camps and accounts for over 75% of the known gold in 5% of the area. This test verifies the process-based understanding and the appropriate mapping of the critical proxies. A further outcome from the map was the identification of a number of new target areas not known for significant gold mineralisation in what otherwise is thought to represent a mature terrane for gold exploration. The approach taken here has been to consider the Late Archaean gold deposits as a holistic system. Despite the recurring areas of uncertainty, this systems view has resulted in new findings that have generic applications to other mineral systems.

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • Rare-earth-element (REE) mineral systems in Australia are associated with igneous, sedimentary, and metamorphic rocks in a range of geological environments (http://www.ga.gov.au/image_cache/GA19657.pdf). Elevated concentrations of these elements have been documented in various carbonatite intrusions, (per)alkaline igneous rocks, iron-oxide breccia complexes, calc-silicate rocks (skarns), fluorapatite veins, pegmatites, phosphorites, fluvial sandstones, unconformity-related uranium deposits, lignites and heavy-mineral sand deposits (beach, dune, marine tidal, and channel). The distribution and concentration of REE in these deposits is influenced by various rock-forming processes including enrichment in magmatic or hydrothermal fluids, separation into mineral species and precipitation, and subsequent redistribution and concentration through weathering and other surface processes. The lanthanide series of REE and yttrium, show a close association with alkaline felsic igneous rocks, however, scandium in laterite profiles has an affinity with ultramafic-mafic igneous rocks.

  • Legacy product - no abstract available