product
Type of resources
Keywords
Publication year
Topics
-
An important part of the management of Australia's marine resources is mapping the geology beneath the sea floor; as part of this work we must understand and mitigate associated environmental impacts. This multimedia product provides background information on marine seismic surveys and the environment, as well as Geoscience Australia's role in environmental mitigation and research. For further information visit http://www.ga.gov.au/about/projects/m.... About the data visualisation: The visualisation of the seismic survey process is representative of a seismic survey, and does not represent any particular survey performed by a particular party. It is not to scale, and is only intended to convey the basic concepts of marine seismic surveys. Production credits: Script: Robin Swindell, Neil Caldwell, Chantelle Farrar, Andrew Carroll, Rachel Przeslawski Production Management: Chantelle Farrar, Neil Caldwell Edit, Cinematography, Sound: Michael O'Rourke 3D Data Visualisation, Animation: Neil Caldwell, Julie Silec Broadcast Design: Julie Silec Scientific Advice: Andrew Carroll, Rachel Przeslawski, Merrie-Ellen Gunning http://www.ga.gov.au Category Science & Technology License Creative Commons Attribution license (reuse allowed)
-
Short video of earthquakes occurring in Queensland during 2013 shown as a time lapse.
-
A video for the launch of new Great Barrier Reef bathymetry data on 30 November 2017.
-
The Australian Geoscience Data Cube has won the 2016 Content Platform of the Year category at the Geospatial World Leadership Awards. The awards recognise significant contributions made by champions of change within the global geospatial industry and were presented during the 2017 Geospatial World Forum held in Hyderabad, India. The Data Cube was developed by Geoscience Australia in partnership with the CSIRO and the National Computational Infrastructure at the Australian National University, and is a world-leading data analysis system for satellite and other Earth observation data. Visit www.datacube.org.au to find out more including the technical specifications, and learn how you can develop your own Data Cube and become part of the collective.
-
This poster shows earthquakes occurring in Australia in 2016 with a background of earthquake activity in Australia over the past 10 years. Also included are images produced as part of the analysis of the Petermann Ranges Earthquakes -, the offshore Bowen Earthquakes -, and the Norsemann Earthquakes Sequences. A yearly summary of earthquake occurrences in Australia as well as the top 10 Australian earthquakes in 2016 are presented.
-
A postcard providing an overview of the marine ecology programme at Geoscience Australia
-
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by UNISDR and GFDRR. We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models and the use of aleatory variability and epistemic uncertainty, and preliminary results for a global hazard assessment which is an update of that included in UNIDSDR GAR15.
-
Audio-visual materials created from OpenQuake training delivered by the Global Earthquake Model held at Geoscience Australia in September 2014.
-
This flythrough highlights canyon environments within the Gascoyne Marine Park offshore northwestern Australia. The Cape Range Canyon is a relatively narrow, linear canyon that initiates on the continental slope, but is connected to the shelf via a narrow channel. The walls of the canyon are steep and reveal a history of slumping and retrogressive failure, that have broadened the canyon over time. The floor contains a series of deep plunge pools, indicative of the action of sediment-laden turbidity currents in further eroding this canyon. Epibenthos within the canyons was relatively sparse and likely regulated by disturbance associated with sedimentation in the canyons. Rock overhangs often supported the highest densities of benthic suspension feeders, including glass sponges, octocorals, and ascidians. Bathymetry data and seafloor imagery for this flythrough was collected by the Schmidt Ocean Institute during survey FK200308. Funding was provided by Schmidt Ocean Institute, Geoscience Australia, the Australian Government’s National Environmental Science Program (NESP) Marine Biodiversity Hub, the Director of National Parks, and the Foundation for the WA Museum through a Woodside Marine Biodiversity Grant.
-
Following a Government decision in 1984, Geoscience Australia actively engages in nuclear monitoring activities on behalf of the Australian Government through the Department of Foreign Affairs and Trade's Australian Safeguards and Non-proliferation Office. Geoscience Australia helps Australia fulfil its obligations under the CTBT by monitoring for nuclear explosions worldwide and by contributing to the development of the CTBT verification regime. Geoscience Australia is currently responsible for the operation and maintenance of 10 of Australia's seismo-acoustic IMS facilities (six seismic stations, three infrasound stations and one hydroacoustic station). Additionally, Geoscience Australia is in the process of building the final infrasound station to complete Australia's seismo-acoustic IMS network. Construction of this station is expected to be completed within the next two years. Geoscience Australia actively participates in international fora dedicated to technological advances supporting nuclear non-proliferation and verification, and to the use of IMS data for civil and scientific applications. The latter include tsunami-warning and the monitoring of earthquakes and volcanic eruptions.