product
Type of resources
Keywords
Publication year
Topics
-
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by UNISDR and GFDRR. We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models and the use of aleatory variability and epistemic uncertainty, and preliminary results for a global hazard assessment which is an update of that included in UNIDSDR GAR15.
-
GA publication: Flyer AEIP, ELVIS, EM-LINK 2021
-
Short video of earthquakes occurring in Queensland during 2013 shown as a time lapse.
-
A video for the launch of new Great Barrier Reef bathymetry data on 30 November 2017.
-
Audio-visual materials created from OpenQuake training delivered by the Global Earthquake Model held at Geoscience Australia in September 2014.
-
An overview of Geoscience Australia's space-related work.
-
The Australian Geoscience Data Cube has won the 2016 Content Platform of the Year category at the Geospatial World Leadership Awards. The awards recognise significant contributions made by champions of change within the global geospatial industry and were presented during the 2017 Geospatial World Forum held in Hyderabad, India. The Data Cube was developed by Geoscience Australia in partnership with the CSIRO and the National Computational Infrastructure at the Australian National University, and is a world-leading data analysis system for satellite and other Earth observation data. Visit www.datacube.org.au to find out more including the technical specifications, and learn how you can develop your own Data Cube and become part of the collective.
-
Unique challenges are faced in modelling faults in intraplate regions for seismic hazard purposes. Low fault slip rates compared to landscape modification rates lead to often poor discoverability of fault sources, and favours incomplete characterisation of rupture behaviours. Irrespective, regional and local test cases have demonstrated that fault sources assigned activity rates consistent with paleoseismic observations have the potential to significantly impact probabilistic seismic hazard assessments in Australia. To reflect this, the 2018 Australian NSHA will for the first time incorporate a fault source model. The model includes over 300 onshore faults, and a handful of offshore faults, which are modelled as simplified planes and assigned a general dip and dip direction. Dips are obtained from seismic-reflection profiles, where available, or inferred by taking into account surface geology and geomorphology, or other fault geometries within similar neotectonic settings. The base of faulting is generally taken as the regional maximum depth of distributed seismicity. Slip rates are calculated from displaced strata of known age, estimated from surface expression, or are extrapolated from other faults within similar neotectonic settings. We construct logic trees to capture epistemic uncertainty in fault source parameters, including magnitude frequency distribution, and the potential for random, periodic or episodic recurrence behaviour. This presentation introduces the new fault source database, the fault source logic tree as it currently exists, and discusses uncertainty in and sensitivity to various elements of the proposed fault source input model.
-
The 2018 revision of Australia's National Seismic Hazard Assessment (NSHA18) represents a substantial improvement from the 2013 NSHA. In particular, this revision will include a fault source models, an improved and more homogeneous earthquake catalogue, and greater epistemic uncertainty through a call for third party source models. This paper presents updated models of seismicity and ground motion that are currently being developed at Geoscience Australia for the NSHA. We use the OpenQuake software to calculate seismic hazard for Australia and compare with OpenQuake implementations of third-party models and the 2013 NSHA. Weighting of logic tree branches for alternative models are discussed, and how these relate to the fundamental datasets on which they are based. A smoothed seismicity model is developed based on recent seismicity while source models derived from neotectonic fault data consider a much longer time history. Final weightings, including for third party models, will be determined in consultation with members of the Australian seismological community.
-
An overview of Geoscience Australia's space-related ground stations work.