From 1 - 10 / 589
  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • At this scale 1cm on the map represents 1km on the ground. Each map covers a minimum area of 0.5 degrees longitude by 0.5 degrees latitude or about 54 kilometres by 54 kilometres. The contour interval is 20 metres. Many maps are supplemented by hill shading. These maps contain natural and constructed features including road and rail infrastructure, vegetation, hydrography, contours, localities and some administrative boundaries. Product Specifications Coverage: Australia is covered by more than 3000 x 1:100 000 scale maps, of which 1600 have been published as printed maps. Unpublished maps are available as compilations. Currency: Ranges from 1961 to 2009. Average 1997. Coordinates: Geographical and either AMG or MGA coordinates. Datum: AGD66, GDA94; AHD Projection: Universal Transverse Mercator UTM. Medium: Printed maps: Paper, flat and folded copies. Compilations: Paper or film, flat copies only.

  • The integrity and strengths of multi-technique terrestrial reference frames such as ITRF2005 depend on the precisely measured and expressed local tie connections between space geodetic observing systems at co-located observatories. A local tie survey was conducted at the Yarragadee (Moblas 5) Satellite Laser Ranging (SLR) observatory, on the Yatharagga property in Western Australia, in May/June of 2007. The aim of the survey was to precisely measure the local terrestrial connections between the space-based geodetic observing systems co-located at the observatory, which include GPS, GLONASS, SLR and DORIS. In particular, this report documents the indirect measurement of the SLR invariant reference point . Geoscience Australia has routinely performed classical terrestrial surveys at the Moblas 5 SLR observatory, including surveys in 1992, 1999, 2001 and 2003. A precision survey was conducted between the permanent survey monuments surrounding the SLR observatory. These survey marks were monitored to ensure their stability as part of a consistent, stable terrestrial network from which local tie connections were made to the SLR and other observing systems. The relationship between points of interest included the millimetre level accurate connections and their associated variance covariance matrix.

  • Paper supporting presentation of the 2007 Offshore Petroleum Explroation AReas at the Australian Petroleum Production and Exploration Association (APPEA) Conference, Adelaide, 16th April 2007.

  • This maps shows the area of the Commonwealth Great Australian Bight Trawl Sector 750m Depth Closure. Produced for the Australian Fisheries Management Authority.

  • It is shown how a change in orientation between the source mechanism of two identically located double couple sources can be estimated from the correlation of the coda waves excited by their sources. The change in orientation is given by the root mean square of the change in strike, ??s dip, ?? and rake, ?? of the double couple. It is not possible to determine ??s, ?? or ?? individually from the cross correlation. Applicability of the theory is tested using synthetic waveforms generated from a 3D finite difference solver for the elastic wave equation. Changes in strike, dip and rake are tested independently and simultaneously. In each case a crossover point is identified such that the actual change in orientation is within one standard deviation of the coda wave interferometry (CWI) estimates for all rotations below the crossover. After the crossover, the CWI estimates give a lower bound on the change in orientation.

  • This map shows the area of the Scalefish Hook 700m Depth Closure within the Commonwealth Scalefish Hook Sector. It was produced for the Australian Fisheries Management Authority.

  • Geochronology is the vital fourth dimension for geological knowledge. It provides the temporal framework for understanding and modelling geological processes and rates of change. Incorporating geochronological 'observations and measurements' into interoperable geological data systems is thus a critical pursuit. - Although there are several resources for storing and accessing geochronological data, there is no standard format for exchanging such data among users. Current systems are a mixture of comma-delimited text files, Excel spreadsheets and PDFs that assume prior specialist knowledge and frequently force the user to laboriously - and potentially erroneously - extract the required data manually. - Geoscience Australia and partners are developing a standard data exchange format for geochronological data ('geochronML') within the broader framework of Observations and Measurements and GeoSciML that are an important facet of emerging international geoscience data format standards. - Geochronology analytical processes and resulting data present some challenging issues as a rock "age" is typically not a direct measurement, but rather the interpretation of a statistical amalgam of several measurements chosen with the aid of prior geological knowledge and analytical metadata. The level at which these data need to be exposed to a user varies greatly, even to the same user over the course of a project. GeochronML is also attempting to provide a generic pattern that will support as wide as range of radioisotopic systems as possible. This presentation will discuss developments at Geoscience Australia and the opportunities for collaboration.

  • This dataset reflects the boundaries of those Indigenous Land Use Agreements (ILUA's) that have entered the notification process or have been registered and placed on the Register of Indigenous Land Use Agreements (s199A, Native Title Act; Commonwealth). This is a national dataset. A spatial attribution includes National Native Title Tribunal number, Name, Agreement Type, Proponent, Area and Registration Date.

  • This dataset attempts to reflect the boundaries of claimant applications for Native Title as per the Register of Native Title Claims (s185, Native Title Act; Commonwealth). This is a national dataset but data is stored by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these. This dataset depicts the spatial record of registered claimant applications. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member assigned to the application. Applicants of registered applications have the Right To Negotiate (RTN) with respect to certain types of Future Acts over the area being claimed. Whilst applications that are determined are recorded on a separate register, all registered applications remain on the Register of Native Title Claims until otherwise finalised.