2024
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.
-
The Otway Basin is a broadly northwest-southeast trending basin and forms part of a rift system that developed along Australia’s southern margin. It represents an established hydrocarbon province with mostly onshore and shallow-water offshore discoveries. However, the outboard deep-water Otway Basin, with water depths up to 6300 m, is comparatively underexplored and can be considered a frontier area. Following the completion of a basin-wide seismic depth-imaging program (Part 1; Lee et al 2021) and insights from the revised seismic interpretation (Part 2; Karvelas et al. 2021), we have developed a comprehensive petroleum system modelling (PSM) study by integrating these data and findings (Part 3). Together the studies have resulted in an improved understanding of the hydrocarbon prospectivity of the deep-water areas of the basin. Given the sparsity of data outboard, almost all legacy petroleum system modelling studies have been focused either on the onshore or shallow-water areas of the basin and primarily on their thick Lower Cretaceous depocentres. The limitations of legacy seismic datasets resulted in a high degree of uncertainty in the derivative interpretations used as input into PSM studies. In addition, the paucity and poor quality of data in the deep-water area reduced confidence in the understanding of the basin evolution and spatial distribution of depositional environments through time. The newly acquired 2D seismic survey and reprocessed legacy data, with calibration via several wells across the basin, has improved confidence in our understanding of the tectonostratigraphic evolution of the basin (Part 2; Karvelas et al. 2021). The study presented herein integrates products from the work in Part 2 into a petroleum system model with the primary objective being to better understand the petroleum systems across the deep-water Otway Basin.
-
The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges the ocean research community to map and understand the changing ocean to inform and stimulate social and economic development, while conserving marine ecosystems. To achieve these objectives, the methodologies that generate data and information about the ocean need to interoperate with unprecedented depth and scale. For this, we must expand global participation in ocean science through a new and coherent approach to best practice development, supporting capacity development and sharing across a dramatically expanded range of communities. Here, we present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the Outcomes envisioned by the Ocean Decade. However, significant challenges remain. These include the haphazard management of methodologies across their life cycle, the ambiguous endorsement of what is “best” and when/where, and the inconsistent access to best practices across disciplines and cultures. To help address these challenges, this Perspective recommends how we - as a global marine science community - can ensure our methodological know-how supports the Ocean Decade outcomes through: promoting convergence of methodologies into context-dependent best practices; incorporating contextualized best practices into Ocean Decade Actions; clarifying who endorses which method and why; creating a global network of complementary ocean practices systems; and ensuring broader consistency and flexibility in international capacity development. <b>Citation:</b> Pearlman J, Buttigieg PL, Bushnell M, Delgado C, Hermes J, Heslop E, Hörstmann C, Isensee K, Karstensen J, Lambert A, Lara-Lopez A, Muller-Karger F, Munoz Mas C, Pearlman F, Pissierssens P, Przeslawski R, Simpson P, van Stavel J and Venkatesan R (2021) Evolving and Sustaining Ocean Best Practices to Enable Interoperability in the UN Decade of Ocean Science for Sustainable Development. Front. Mar. Sci. 8:619685. doi: 10.3389/fmars.2021.619685
-
Geoscience Australia produces a range of educational resources (ga.gov.au/education), including webinars on various geoscientific topics for school children. These webinars are designed to be used for classroom or home learning. They are standalone products that do not require preparation or follow-up by teachers, although this is encouraged. The webinar 'Australia's Seafloor: What's on it, who cares and how do we map it' is designed for upper primary students (Years 4-6). It is delivered by marine scientist Rachel Przeslawski and introduces the techniques and uses of seabed mapping, with a focus on Australia, as well as some of the fascinating marine animals found on the seafloor. Length: 23 minutes.
-
The Browse Basin, located offshore on Australia¿s North West Shelf, is a proven hydrocarbon province that hosts large gas accumulations with associated condensate. Small light oil accumulations are found mostly within the Cretaceous succession. Geoscience Australia undertook a multi-disciplinary study of the Browse Basin to better understand the regional hydrocarbon prospectivity and high-grade areas with increased liquids potential in Cretaceous supersequences. The sequence stratigraphy and structural framework of the Cretaceous succession were analysed to determine the spatial relationship of reservoir and seal pairs, and areas of source rock development. Updated biostratigraphy, well lithology and log analysis, seismic stratal geometry, facies, palaeogeographic and play fairway interpretations were completed for seven supersequences from the late Tithonian to Maastrichtian (K10¿K60 supersequences). These data, together with geochemical studies of source rocks and fluids (gases and liquids), were integrated in a regional petroleum systems model to better understand source rock distribution, character, generation potential, and play prospectivity. The regional deposition of the Permo-Carboniferous, Triassic, Jurassic and Cenozoic successions were mapped to constrain the burial history model. Supersequence cross-sections and palaeogeographic maps show the distribution of gross depositional facies, revealing three main Cretaceous stratigraphic play types across the basin. These are basin-margin, clinoform topset and submarine fan plays. Geochemical analyses using molecular and stable carbon and hydrogen isotopic signatures correlate fluids in these plays with potential source rocks. The geochemical fingerprints enabled the identification of four Mesozoic petroleum systems. Burial history modelling demonstrates hydrocarbon generation from potential source rocks within the Jurassic and Lower Cretaceous supersequences. Many accumulations have a complex charge history with the mixing of hydrocarbon fluids from multiple Mesozoic source rocks, as recognised from the deconvolution of their geochemical compositions. The basin margin play occurs within the K10¿K40 supersequences (Early Cretaceous upper Vulcan and Echuca Shoals formations) along the inboard Yampi and Leveque shelves. The K20¿K30 (Echuca Shoals Formation) basin margin play received gas (Caspar 1A) potentially sourced from the J10¿J20 supersequences (Plover Formation) and oil (Gwydion 1) sourced from the K20¿K30 supersequences (Echuca Shoals Formation). Seal quality and thickness are good except where the seal facies pinch out around basement highs on the Yampi Shelf, and where they are truncated by the K50 sequence boundary (Wangarlu Formation) inboard on the Leveque Shelf. The K40 basin margin play (Jamieson Formation) received gas (Gwydion 1, Cornea field) that is most likely sourced from the J10¿J20 supersequences (Plover Formation) and oil (Cornea field) sourced from the K20¿K30 supersequences (Echuca Shoals Formation). The marine shales in the K20¿K30 supersequences (Echuca Shoals Formation) have low hydrogen indices (~200 mg hydrocarbons/gTOC) and hence may only be able to expel sufficient hydrocarbons to sustain migration over short distances. The co-existence of oil sourced from these successions and gas sourced from the J10¿J20 supersequences (Plover Formation) suggests that potential Cretaceous-sourced liquids were mobilised and carried to the shelf edge by co-migrating Early¿Middle Jurassic Plover-derived gas. Once present within these shallow reservoirs, further loss of the low and mid-chain hydrocarbons occurred through leakage, water washing and biodegradation. Together, the migration and secondary alteration processes have enhanced the liquids potential on the basin margin. The clinoform topset play extends between the basin-margin and the shelf-edge. These plays consist of higher order progradational sandstone units overlain by intraformational and top seals. The K10 clinoform topset play (namely the Brewster Member of the Upper Vulcan Formation) hosts gas in the Ichthys/Prelude and Burnside accumulations. The gas is probably largely sourced from the organic-rich shales of the J30¿K10 supersequences (Vulcan Formation), with an additional contribution from the J10¿J20 supersequences (Plover Formation) in satellite fields, such as observed at Concerto 1 ST1. Other similar K10 plays are mapped in the southern Caswell and Oobagooma sub-basins and could receive charge from J30¿K10 potential source pods. The K30 clinoform topset play (M. australis sand of the Echuca Shoals Formation) is a reservoir for gas on the Leveque Shelf at Psepotus 1, with additional evidence for oil migration into this play at Braveheart 1 in the northern Caswell Sub-basin. This play extends in underexplored areas on the Leveque Shelf to the inboard Barcoo Sub-basin and on the southern Yampi Shelf to the outboard Caswell Sub-basin. The K40 clinoform topset play (D. davidii sand of the Jamieson Formation) hosts gas (Adele 1) and light oil (Caswell 1). The light oil is probably sourced primarily from the K20¿K30 supersequences (Echuca Shoals Formation) in the central Caswell Sub-basin. This play extends outboard in the Caswell Sub-basin to Caswell 2 ST2 and Phrixus 1. The submarine fan play comprises sandstone-prone basin floor fans that extend across the basin floor from the toe of the slope and are sealed by down-lapping mudstone facies. This play may overlie either second, third, fourth or fifth-order sequence boundaries and are particularly well developed within the Upper Cretaceous K60 supersequence (Wangarlu Formation). The K30 submarine fan play (Echuca Shoals Formation) hosts gas in the outboard northern Caswell Sub-basin (Abalone Deep 1 and Adele 1). Isotopic evidence for the gas at Adele 1 suggests that the K20¿K30 supersequences (Echuca Shoals Formation) is the most likely source. This play is underexplored elsewhere within the basin, but it includes the tentatively interpreted play around Omar 1 in the Barcoo Sub-basin. There is evidence for oil migration through the K50 (Wangarlu Formation) submarine fan play at Discorbis 1, with the source of hydrocarbons possibly being from the K20¿K30 supersequences (Echuca Shoals Formation). This play extends into the inboard northern Caswell Sub-basin. The K60 submarine fan (Wangarlu Formation) play either hosts oil and gas (Abalone 1, Caswell 2 and Marabou 1) or contains evidence of hydrocarbon migration (Discorbis 1 and Gryphaea 1) in numerous wells. The most likely source of petroleum is from the K20¿K30 supersequences (Echuca Shoals Formation). The results of this study reveal the existence of multiple stacked Cretaceous plays in the basin, including those in underexplored vacant acreage. Presented at the 2017 Southeast Asia Petroleum Exploration Society (SEAPEX) Conference
-
The Roebuck Basin and the adjoining Beagle and Barcoo sub-basins are underexplored areas on Australia’s North West Shelf that are undergoing renewed exploration interest since the discovery of oil at Phoenix South 1 in 2014 and subsequent hydrocarbon discoveries in the Bedout Sub-basin. A well folio of 24 offshore wells across the Beagle, Bedout, Rowley and Barcoo sub-basins has been compiled as part of Geoscience Australia’s hydrocarbon prospectivity assessment across the region. It consists of composite well log plots and well correlations that summarise lithology, lithostratigraphy, Geoscience Australia’s newly acquired biostratigraphic and geochemical data as well as results of petrophysical analysis. A revised sequence-stratigraphic interpretation, key petroleum system elements and drilling results are also documented. The wells dominantly target Triassic shoreward facies (Keraudren Formation) as the primary reservoir objective and Jurassic fluvial-deltaic (Depuch Formation) and/or Lower Cretaceous sandy deltaic facies as the secondary objective. The Keraudren Formation sandstones are sealed intra-formationally either by discontinuous units and/or by the regional Cossigny Member. The Jurassic Depuch Formation sandstones are sealed by regional Lower Cretaceous mudstones. Both charge and structure have been identified as critical issues in the Roebuck Basin. In the Beagle Sub-basin, seal integrity and migration pathways are also considered high risk. Well correlations have identified differences in the basin history and provide insights into the distribution of facies and other characteristics of the Jurassic and Triassic successions. <b>Citation:</b> Nguyen Duy, Rollet Nadege, Grosjean Emmanuelle, Edwards Dianne S., Abbott Steve, Orlov Claire, Bernardel George, Nicholson Chris, Kelman Andrew, Khider Kamal, Buckler Tamara (2019) The Roebuck Basin, Beagle and Barcoo Sub-basin well folio. <i>The APPEA Journal</i><b> 59</b>, 920-927.
-
Earthquake design standards seek to ensure that structures are adequately resilient to local hazard. The probabilistic hazard that forms the basis of the design loadings used and the methods by which they are calculated typically reflect the best available information and practices at the time. This was the case with the earthquake loadings standard for the design of PNG buildings that was published in 1982. However, with the collaborative development of a better understanding of earthquake hazard across PNG the need to adjust the earthquake loadings for design through an Interim Amendment was highlighted. This key step would precede any more general and broader update of national building regulations. In this paper the process taken to translate the latest earthquake hazard assessment for PNG, PSHA19, to design practice is described. This included an assessment of the level of current under-design and the engagement with stakeholders in PNG to assess their needs through workshop activity. The central document to this process, “The Interim Amendment to PNGS 1001-1982: Part 4: Earthquake Design Actions”, is described and goes beyond the incorporation of the new design hazard to the introduction of new approaches for assessing earthquake loads that more closely align with those used in New Zealand and Australia. Preparation and delivery of seminars in-country to familiarise design professionals with its use are also described along with the series of professional development video products also developed for use in PNG. Finally, future needs in regulatory development in PNG are outlined. Presented at the 2023 Australian Earthquake Engineering Society (AEES) National Conference
-
This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.
-
This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.
-
Effective correction of remotely sensed data for terrain illumination effects over mountainous areas, requires Digital Elevation Model (DEM) data at an appropriate resolution and quality. Conversely, the performance of terrain illumination correction and scale-based analysis could be used to evaluate the quality of DEM data used for the correction. In this study, TanDEM-X Intermediate DEM (IDEM) data at 12 m resolution and the 1-arc second Shuttle Radar Topography Mission (SRTM) data were used independently to evaluate the relative effectiveness of the terrain illumination correction for Landsat 8 optical data over Tasmania, Australia. Results from the terrain illumination correction and filter bank analysis show that IDEM 12 m data can resolve finer details of terrain shading than the SRTM based DEM and deliver better results in areas with detail-rich terrain. However, in the data available for this study, spikes and other noise artefacts were prevalent, especially over areas covered by water; removal of such noise artefacts would increase the utility of the IDEM for operational correction of terrain illumination effects in optical satellite data. Presented at the TerraSAR-X /TanDEM-X Science Team Meeting 2016, Oberpfaffenhofen, Germany