From 1 - 10 / 86
  • Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The gravity data collection contains both onshore and offshore data acquired on geophysical surveys conducted by Commonwealth, State & NT Governments and the private sector.

  • Geoscience Australia (GA) has created a unique collection of 3D structural and geological models and model inputs for Australia and its near shore regions. Currently the collection contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale. The approximately 40 regional scale models in the collection cover roughly 1/3 of the Australian continent. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. The geologic models represent the integration of geophysical surveys, seismic surveys, borehole data, field geology, and geochemical data, the majority of which will now be available through this and other RDSI collections. In their current form, the 3D models provide a valuable input to simulations of geological processes. However, the plan over time is to use the HPC capability at NCI and the large storage volumes available to dynamically integrate the various models and geological, geochemical and geophysical derivative products to then create a unified 3D model for the entire continent. Separately and then cumulatively, these models will provide an important new basis for describing and understanding Australia's geologic evolution and resource wealth. Currently there are no international open standards for the development and storage of 3D geological models, which is why they are difficult to integrate or stitch into nationally integrated data sets. The lack of consistency of the models means that each has to be transformed into formats compatible with existing HP modelling and simulation software. It is hoped that through exposing these 3D geological models into a HP collaborative environment that this will foster and accelerate the development of international standards and tools necessary for the assimilation of 3D geological models into a variety of HP programs. <b> Note: This record has been superseded by eCat 144629:</b> - <a href="https://pid.geoscience.gov.au/dataset/ga/144629">https://pid.geoscience.gov.au/dataset/ga/144629</a>

  • Survey Data captured after severe natural hazard events covering a range of hazards with specific attributes. This observational information is used as input data to assessing vulnerability to natural hazard, but is not made available in its raw form. <b>Value: </b>Used to assess impacts from natural disasters and thereby reduce future risks. <b>Scope: </b>Australia, data from Papua New Guinea, Indonesian province of West Sumatra (Padang) and New Zealand

  • This collection includes Global Navigation Satellite System (GNSS) observations from long-term continuous or semi continuous reference stations at multiple locations across Australia and its external territories, including the Australian Antarctic Territory. <b>Value:</b> The datasets within this collection are provided on an openly accessible basis to support a myriad of scientific and societal positioning applications in Australia. These include the development and maintenance of the Australian Geospatial Reference System (AGRS); the densification of the International Terrestrial Reference Frame (ITRF); crustal deformation studies; atmospheric studies; and the delivery of precise positioning services to Australian businesses. <b>Scope: </b> Data from reference stations across Australia and its external territories, including the Australian Antarctica Territory. <b>Access: </b> To access the datasets and query station information visit the <a href="https://gnss.ga.gov.au./">Global Navigation Satellite System Data Centre</a>

  • Geoscience Australia houses one of the world's largest collections of petroleum data. Much of this data is non-confidential and available to the petroleum industry, research organisations and the public. The collection includes seismic survey data submitted by industry under legislative requirements as well as data collected by research projects and marine surveys undertaken by Geoscience Australia or other government agencies or institutions. The collection comprises digital 2D and 3D seismic survey field data, navigation data, processed data, velocity data, observer's logs, operational reports, processing reports, bathymetry data, potential field data (gravity and magnetic) and also hard-copy data submitted during the pre-digital era including seismic sections and other analogue formats <b>Value: </b> Data used for interpreting the geologic structure of the subsurface. This work can be used for the assessment of resource potential. <b>This data can be discovered through the National Offshore Petroleum Information Management System (NOPIMS) - https://www.ga.gov.au/nopims</b>

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This data package brings together a suite of datasets which describe the seabed environments and shallow geology of the Leveque Shelf, Browse Basin.

  • Thin sections of rocks collected during Geoscience Australia mapping programs over many decades. The collection preserves a physical record of samples for future reference by GA, industry and university researchers.

  • This collection contains Earth Observations from space created by Geoscience Australia. This collection specifically is focused on derived or value-added products. Example products include: Fractional Cover (FC), Australian Geographic Reference Image (AGRI), and InterTidal Extents Model (ITEM) etc.

  • Archive of the data and outputs from the Assessment of Tropical Cyclone Risk in the Pacific Region project. See GA record 76213.

  • This is the collection level record for the N.H. (Doc) Fisher Geoscience Library's Australian geological field notebooks. Digitisation and transcription of these notebooks by a dedicated team of volunteers via the Australian Museum's DigiVol Citizen Science platform is ongoing (subject to annual funding). The Australian field notebooks contain the geological observations recorded by geologists of Geoscience Australia (GA) and its predecessors during fieldwork across the country from the 1930s until paper notebooks were replaced by electronic devices. The intention of this work is to make the content of these unique historical artefacts more widely accessible to researchers and the public. At present, access to the majority of the field notebooks is only available by visiting the N.H. (Doc) Fisher Geoscience Library at Geoscience Australia in Canberra. However, individual records for the Australian notebooks can be found in the Library's online catalogue, at: <a href="https://geoscienceaustralia.intersearch.com.au">https://geoscienceaustralia.intersearch.com.au</a>.