From 1 - 10 / 39
  • Water table elevation of the Great Artesian Basin. Data is available as contours (Shapefile) and elevation grids (ESRI grid and ESRI ASCII grid) Height is in metres above sea level (AHD). Cell resolution is 1000m. Contours and elevations were produced for the Great Artesian Basin Water Resource Assessment and used in watertable maps in: 1. Chapter 6 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 2. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 10 in the associated summary report. 3. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Central Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 13 in the associated summary report. 4. Regional watertable section of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 14 in the associated summary report. 5. Regional watertable section of Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Western Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia, plus Figure 12 in the associated summary report. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75830. METHODS (continued from Lineage field): Contours were hand drawn from point water level data. Groundwater water levels along rivers with high EVI values were assumed to be 10m below ground. This information was used to interpret groundwater level contours where borehole water level data was absent. In areas of sparse data coverage the 3 second DEM was used to constrain contours below ground level. SA water levels were corrected for density effects due to salinity (in excess of 100,000 mg/L TDS in some bores in the Eyre Basin) but all others were uncorrected because salinity data were not available. Density corrections for the watertable are not deemed to be an issue outside of the SA portion of the GAB. Remote sensing studies of Enhanced Vegetation Index (EVI) were also used in the interpretation to provide water level information along certain rivers (refer to data set "Watercourses used to calculate riparian evapotranspiration loss from the GAB") where there were no boreholes. The hand drawn transparencies interpreted by Jim Kellet were scanned into a 2bit tiff file format. Scanned images were then rectified within ArcGIS and vectorised into linework using the ArcScan toolset to produce the polygon dataset Linework and were attributed with a contour value within the field "height", as well as a DESCRIPTION of the line TYPE in the field "descript". The grid surface was created using the Topo to Raster tool in the Spatial Analyst toolset from the values within the "height" field and clipped to the Revised Great Artesian Basin boundary and GEODATA TOPO 250K coastline. Note: data used to compile this map was a combination of the most recent available water level measurements (as at 2011), water level measurements at the time of drilling or the first water cut reported in drillers logs.

  • Layer 07 Base of Hutton Sandstone surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Hutton Sandstone. The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76025.

  • Layer 06 Base of Injune Creek Group surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Injune Creek Group. The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76024.

  • Layer 08A Base of Evergreen and Marburg formations Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Poolowanna Formation. The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface. This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76953.

  • Layer 08B Base of Poolowanna Formation Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Poolowanna Formation . The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76953.

  • Layer 10 Base of Jurassic-Cretaceous sequence surface Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Jurassic-Cretaceous sequence The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd) Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface. This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028) This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76028. REFERENCES (Continued from Lineage field) 10. Passmore, V. L., T. U. Maung, et al. (1992). Gulf of Carpentaria petroleum prospectivity study. Record 1992/20. Australia, Bureau of Mineral Resources, Geology and Geophysics 11. Hawke, J. M. and J. N. Cramsie (1984). Contributions to the geology of the Great Australian Basin in New South Wales. Bulletin 31. Sydney. 12. Hinds, M. (2011). NSW Great Artesian Basin internal data set released to Geoscience Australia in 2011 by NSW Office of Water. Australia, New South Wales Office of Water. 13. Ransley and Smerdon (eds.) 2012. Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. CSIRO. Canberra. 14. Nelson GJ, Carey H, Radke BM and Ransley TR (2012). The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.

  • This data release contains accurate positional data for groundwater boreholes in terms of horizontal location as well as elevation of the top of casing protectors. Twenty-four boreholes located in the Nulla and McBride basalt provinces have had DGPS survey results compiled and are presented. Using 95% confidence intervals, the horizontal uncertainties are less than 1.2m and vertical uncertainties less than 0.9m. These results are a substantial improvement, particularly on the uncertainty of elevations, and as such allow water levels need to be compared between bores on a comparable datum, to enable a regional hydrogeological understanding. Quantifying the uncertainties in elevation data adds robustness to the analysis of water levels across the region rather than detracting from it.

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.

  • This web service delivers the geographical extents and descriptive metadata of geophysical datasets from all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as from State and Territory geological survey agencies. Datasets include gravity, magnetic, radiometric, and electromagnetic data, and elevation data collected during geophysical surveys.