From 1 - 10 / 83
  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2022 acreage release consists of 10 areas offshore of the Northern Territory, Western Australia, Victoria, and the Ashmore and Cartier Islands.

  • The values and distribution patterns of the strontium (Sr) isotope ratio 87Sr/86Sr in Earth surface materials is of use in the geological, environmental and social sciences. Ultimately, the 87Sr/86Sr ratio of any mineral or biological material reflects its value in the rock that is the parent material to the local soil and everything that lives in and on it. In Australia, there are few large-scale surveys of 87Sr/86Sr available, and here we report on a new, low-density dataset using 112 catchment outlet (floodplain) sediment samples covering 529,000 km2 of inland southeastern Australia (South Australia, New South Wales, Victoria). The coarse (<2 mm) fraction of bottom sediment samples (depth ~0.6-0.8 m) from the National Geochemical Survey of Australia were fully digested before Sr separation by chromatography and 87Sr/86Sr determination by multicollector-inductively coupled plasma-mass spectrometry. The results show a wide range of 87Sr/86Sr values from a minimum of 0.7089 to a maximum of 0.7511 (range 0.0422). The median 87Sr/86Sr (± robust standard deviation) is 0.7199 (± 0.0112), and the mean (± standard deviation) is 0.7220 (± 0.0106). The spatial patterns of the Sr isoscape observed are described and attributed to various geological sources and processes. Of note are the elevated (radiogenic) values (≥~0.7270; top quartile) contributed by (1) the Palaeozoic sedimentary country rock and (mostly felsic) igneous intrusions of the Lachlan geological region to the east of the study area; (2) the Palaeoproterozoic metamorphic rocks of the central Broken Hill region; both these sources contribute fluvial sediments into the study area; and (3) the Proterozoic to Palaeozoic rocks of the Kanmantoo, Adelaide, Gawler and Painter geological regions to the west of the area; these sources contribute radiogenic material to the region mostly by aeolian processes. Regions of low 87Sr/86Sr (≤~0.7130; bottom quartile) belong mainly to (1) a few central Murray Basin catchments; (2) some Darling Basin catchments in the northeast; and (3) a few Eromanga geological region-influenced catchments in the northwest of the study area. The new spatial dataset is publicly available through the Geoscience Australia portal (https://portal.ga.gov.au/restore/cd686f2d-c87b-41b8-8c4b-ca8af531ae7e).

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2021 acreage release consists of 21 areas offshore of Western Australia, Victoria, Tasmania and the Ashmore and Cartier Islands.

  • The annual offshore petroleum exploration acreage release is part of the government’s strategy to promote offshore oil and gas exploration. Each year, the government invites companies to bid for the opportunity to invest in oil and gas exploration in Australian waters. The 2020 acreage release consists of 42 areas offshore of the Northern Territory, Western Australia, Victoria and the Ashmore and Cartier Islands.

  • <div>Scientific studies undertaken on core from the Barnicarndy 1 well drilled in 2019 in the onshore Canning Basin in Western Australia as part of the Exploring for the Future program have shown that the well penetrated a thick section of the early Ordovician Nambeet Formation which contains abundant fossils reflective of deposition in an open marine environment. Although the calcareous shales are organically poor (average total organic carbon content 0.17 wt%) processing of 42 drill core samples recovered a plethora of acid-resistant, organic-walled microfossils. Seven core samples with the highest organic content were analysed for their molecular (biomarker) fossils and stable isotopic composition to provide insights into the type of organic matter preserved, and the redox conditions of the sediments during deposition.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australian Organic Geochemistry Conference 27-29 November (https://events.csiro.au/Events/2022/October/5/Australian-Organic-Geochemistry-Conference)

  • <div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates.&nbsp;</div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report.&nbsp;</div><div><br></div>

  • We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. Heavy mineral presence/absence, absolute and relative abundance, and co-occurrence are metrics useful to map, discover and interpret catchment lithotype(s), geodynamic setting, magmatism, metamorphic grade, alteration and/or mineralization. Underpinning this vision is a pilot project, focusing on a subset from the national sediment sample archive, which is used to demonstrate the feasibility of the larger, national-scale project. We preview a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool will contribute significantly to mineral prospectivity analysis and modeling, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, lower carbon energy model. The full, peer-reviewed article can be found here: Caritat, P. de, McInnes, B.I.A., Walker, A.T., Bastrakov, E., Rowins, S.M., Prent, A.M. 2022. The Heavy Mineral Map of Australia: vision and pilot project. Minerals, 12(8), 961, https://doi.org/10.3390/min12080961

  • Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).

  • <div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994).&nbsp;</div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>

  • <div>The fluid inclusion stratigraphy database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for Fluid Inclusion Stratigraphy (FIS) analyses performed by FIT, a Schlumberger Company (and predecessors), on fluid inclusions in rock samples taken from boreholes. Data includes the borehole location, sample depth, stratigraphy, analytical methods and other relevant metadata, as well as the mass spectrometry results presented as atomic mass units (amu) from 2 to 180 in parts per million (ppm) electron volts.</div><div> Fluid inclusions (FI) are microscopic samples of fluids trapped within minerals in the rock matrix and cementation phases. Hence, these FIS data record the bulk volatile chemistry of the fluid inclusions (i.e., water, gas, and/or oil) present in the rock sample and determine the relative abundance of the trapped compounds (e.g., in amu order, hydrogen, helium, methane, ethane, carbon dioxide, higher molecular weight aliphatic and aromatic hydrocarbons, and heterocyclic compounds containing nitrogen, oxygen or sulfur). The FI composition can be used to identify the presence of organic- (i.e., biogenic or thermogenic) and inorganic-sourced gases. These data provide information about fluid preservation, migration pathways and are used to evaluate the potential for hydrocarbon (i.e. dry gas, wet gas, oil) and non-hydrocarbon (e.g., hydrogen, helium) resources in a basin. These data are collated from Geoscience Australia records, destructive analysis reports (DARs) and well completion reports (WCRs), with the results being delivered in the Fluid Inclusion Stratigraphy (FIS) web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>