From 1 - 10 / 256
  • This framework is a reference for individuals and agencies involved in bushfire risk assessment in Australia who seek to improve information on bushfire risk from quantitative methods compared to qualitative methods. It is aimed at bushfire researchers and risk managers in fire, planning and related agencies. Computational bushfire risk assessment is in an early stage of development in Australia. It is an opportune time to establish a framework sufficiently broad that it will accommodate pre-existing and new methods to assess bushfire risk while encouraging innovation. Current methods for assessing bushfire risk in Australia use different terminologies and approaches, and application of an overarching framework improves the potential to compare methods and confidence in comparing results between studies.

  • This is a short and informative 3.3 minute movie for the Engineering, Economics and Exposure Project - NEXIS Development for DCCEE - late 2010. It is a promotional movie that demonstrates NEXIS capabilities, and explains how NEXIS will be benefitial to the NEXIS stakeholder. This movie may also go onto the web, where it's purpose is to convince the public that NEXIS is a worthwhile investment in Australia's future.

  • Severe wind accounts for about 40 percent of the total number of buildings damaged by natural disasters in Australia during the 20th Century. Climate change has the potential to significantly affect severe wind hazard and the resulting level of economic loss. We describe a computational framework that has been developed to quantify both the wind hazard and risk due to severe winds. The nationally consistent assessment of severe wind hazard and risk (residential buildings only) is based on innovative modeling techniques, heuristic wind vulnerability assessments and application of Geoscience Australia's National Exposure Information System (NEXIS). We have applied new modelling and analysis techniques to develop a revised understanding of the regional wind hazard across Australia. This modelling has enabled the development of a wind hazard map for the Australian region. Regional wind hazard has been assessed by utilising statistical-parametric models, dynamical downscaling and spatial interpolation techniques allowing the derivation of estimates of wind hazard from three different phenomena - tropical cyclones, thunderstorms and synoptic storms. Across much of the interior of the country, the revised estimates of regional wind speeds are comparable to the regional wind speeds specified in the existing Australian - New Zealand wind loading standard (AS/NZS 1170.2 2010), generally to within 10 percent for the design wind speeds (500-year return period gust wind hazard). The regional wind speeds derived in AS/NZS 1170.2 were determined from analysis of long-term records (observations) of daily maximum gust wind speeds.

  • Climate change is expected to increase severe wind hazard in many regions of the Australian continent with consequences for exposed infrastructure and human populations. The objective of this study is to provide a nationally consistent assessment of wind risk under current climate and to provide preliminary indications of the effects (impact) of future hazard under several climate change scenarios. This is being undertaken by considering wind hazard, infrastructure exposure and wind vulnerability of infrastructure (residential buildings). The National Wind Risk Assessment (NWRA) will identify communities subject to high wind risk under present climate, and which will be most susceptible to any climate change related exacerbation of local wind hazard. While there is significant uncertainty on what the likelihood of extreme winds will be in the future, the understanding of current local wind hazard for the Australian region is also in need of improvement. Australian wind hazard is based on the statistical analysis of extreme wind observations and engineering judgement. Observations include peak 3-second gusts captured at about 30 meteorological measurement stations, mainly located at significant city and regional airports. These provide poor spatial representation with regard to wind hazard. This study is taking advantage of modelled wind hazard assessments (current climate) being developed at Geoscience Australia utilising separate techniques for the three main wind hazards: tropical cyclones; thunderstorms; and synoptic winds. A stochastic model based on observed and modelled cyclone tracks is used to obtain an understanding of cyclonic wind hazard. Two statistical approaches involving observed and modelled vertical instability and mean wind speed fields (via high-resolution regional climate model) are the basis for the thunderstorm and synoptic wind hazard.

  • In order to calibrate earthquake loss models for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system, two databases have been developed: an Atlas of ShakeMaps and a catalog of human population exposures to moderate to strong ground shaking (EXPO-CAT). The full ShakeMap Atlas currently contains over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by merging Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. Two applications of EXPO-CAT are illustrated: i) a simple objective ranking of country vulnerability to earthquakes, and; ii) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We find only limited quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Finally, we combine all the Atlas ShakeMaps to produce a global map of the peak ground acceleration (PGA) observed in the past 35 years, and compare this composite ShakeMap with existing global hazard models. In general, these analyses suggest that existing global and regional hazard maps tend to overestimate hazard.

  • The Bushfire CRC initiated in 2011 the project 'Fire & Impact Risk Evaluation - Decision Support Tool (F.I.R.E.-D.S.T)' involving Geoscience Australia, CSIRO, Bureau of Meteorology and University of Melbourne. The project is the largest of the Bushfire CRC's suite of projects and conducts research into the multiple aspects required for the computer simulation of bushfire impact and risk on the peri-urban and urban interface. This paper will provide an overview of the research directions for the project and our research progress. In particular we will summarise our progress in: - The development of a Bushfire Risk Assessment Framework, - The inclusion of detailed building information to improve exposure, - The inclusion of human factors and wind damage in determining building vulnerability to bushfires, - The new Bureau of Meteorology ACCESS Numerical Weather Prediction (NWP) system to provide high temporal and spatial resolution meteorology for input into the PHOENIX Rapidfire fire spread simulation model, - The development of very-high resolution local wind modifiers, - The changes made to the PHOENIX fire simulation system, - The development of an bushfire impact/damage subsystem, - The integration of the exposure, vulnerability, fire spread and impact systems to produce a cohesive research tool, and - Initial research on convection column and smoke plume dynamics. The team examined the effectiveness of this research by analysing numerous simulation scenarios. This paper will display the effectiveness of the research progress by providing one example of the comparison between the 2009 Black Saturday

  • The National Exposure Information System (NEXIS) project is an initiative of Geoscience Australia in response to the Australian Government's research priority of safeguarding Australian communities from natural hazards, critical infrastructure failures and policy development. The governmental priority urges the implementation of a 'nationally consistent system of data collection, research and analysis to ensure a sound knowledge-base on natural disasters and disaster mitigation'. The infrastructure exposure definition and development framework suitable for multi hazards and climate change impact analysis is highly complex. NEXIS aims to meet the challenge by collecting, collating and maintaining nationally consistent exposure information at the individual building level. This requires detailed spatial analysis and the integration of available demographic, structural and statistical data for various sectors. The system integrates data from several national spatial databases, such as the Geocoded National Address File, the Property Cadastre, Australian Bureau of Statistics (ABS) census data, and building data from Australian state governments. It also includes post disaster survey information and data from several infrastructure agencies and local government bodies. NEXIS provides a representative assessment of asset exposure to several hazard models which can be aggregated to an appropriate level from State to mesh block level for the required application. By integrating the information with the decision-support tools of alert systems and early warning, it can enable the rapid forecasting of the impacts due to various hazards (infrastructure damage and casualties). Currently it is being used for tactical response for emergency managers and strategic policy and planning development. In addition to enabling research in Geoscience Australia's risk and impact analysis projects, it supports several government initiatives across the departments and national committees.

  • FIRE-DST is the largest of the projects within the extended Bushfire Cooperative Research Centre (BCRC). It is addressing the sub-theme of evaluating risk by developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research is considering three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region. Outcomes from recent extreme fires have demonstrated a need for a tool to assess future bushfire impacts and risk on regional and peri-urban communities. Such a tool would illustrate (map) bushfire impact and risk across the urban fringe and will also enable fire and land management authorities to develop and assess the effect of appropriate fire risk treatment options at local, regional and national levels. The tool would also characterise vegetation, extreme fire weather, firespread, smoke production and dispersion, and estimate the consequences of extreme fires on communities. As well as being validated using conditions pertaining at the time of the case study events, the tool will be used to explore alternative scenarios reflecting the sensitivity in ignition, fuel load and state, meteorology and fire spread, as well as alternative suppression strategies. Results from these scenario analyses and associated reports and papers will be communicated via the project website and through structured workshops.

  • Overhead transmission lines are a key element of the electrical power system for transferring bulk power from generators to communities. Lattice type transmission towers carrying conductors form the physical backbone of the power transmission system. Transmission tower safety and reliability assessment is necessary to plan for minimisation of the risk of disruption of power supply resulting from in-service tower failure. Lattice type transmission towers are constructed using angle section members and are eccentrically connected. They are regarded as one of the most difficult forms of lattice structures to analyse for dynamic loads. Analysis is difficult due to fabrication errors, inadequate joint details and material properties being hard to quantify as a combination. Proof loading and full-scale tower testing is a traditional form of design validation for lattice type towers [1]. However, loading conditions experienced in severe wind events are dynamic and relatively short term loads and this behavior is confirmed in a limited way through full scale measurements of aero-elastic models in wind tunnels [2].

  • Geoscience Australia has developed a model to assess severe wind hazard for large-scale numerical model-derived grided data. The severe wind modelling approach integrates two models developed at Geoscience Australia: a) A statistical model based on observations which determines return periods (RP) of severe winds using Extreme Value distributions (EVD), and b) A model which extracts mean wind speeds from high resolution numerical models (climate simulations) and generates wind gust from the mean speeds using Monte Carlo simulation (convolution with empirical gust factors) This methodology is particularly suitable for the study of wind hazard over large regions, and is being developed to provide improved spatial information for the Australia/NZ Wind Loading Standard (AS/NZS 1170.2, 2002). The methodology also allows comparison of current and future wind hazard under changing climate conditions. To illustrate the characteristics and capabilities of the methodology, the determination of severe wind hazard for a high-resolution grid encompassing the state of Tasmania (south of the Australian continent) will be presented and discussed, considering both the current and a range of possible future climate conditions (utilising IPCC B1 & A2 emission scenarios).