From 1 - 10 / 150
  • The Kangaroo Caves zinc-copper deposit in the Archaean Panorama District in the northern Pilbara Craton, Western Australia contains an Indicated and Inferred Mineral Resource of 6.3 million tonnes at 3.3% zinc and 0.5% copper. The Kangaroo Caves area is characterised by predominantly tholeiitic volcanic rocks of the Kangaroo Caves Formation, which is overlain by turbiditic sedimentary and volcanic rocks of the Soanesville Group. Zinc-copper mineralisation is hosted mainly by the regionally extensive Marker Chert, the uppermost unit of the Kangaroo Caves Formation, and structurally controlled by D1 synvolcanic faults. The upper area of the deposit is characterised by quartz-sphalerite ± pyrite ± baryte ± chalcopyrite, whereas the lower area contains mainly chlorite-pyrite-quartz-carbonate-sericite ± chalcopyrite ± sphalerite. Laser ablation inductively coupled plasma mass spectrometry analyses show that cobalt-nickel ratios in pyrite are significantly greater in the upper, zinc-rich area (median copper/nickel = 0.4) of the deposit than the lower, zinc-poor area (median copper/nickel = 5). Structural analysis of the Kangaroo Caves area combined with Leapfrog modelling of ore and trace element distribution shows that the deposit is predominantly an elongate sheet of zinc mineralisation (-1%), which plunges ~30° to the northeast and is approximately 1000 metres in length. The morphology of the Kangaroo Caves deposit was retained from its original formation, despite rotation during the D2 event. Variations in hydrothermal alteration assemblages, including the copper and nickel contents of pyrite within the deposit and underlying dacite, are interpreted to be the result of variations in the influx and mixing of seawater with upwelling volcanogenic fluids during zinc-copper mineralization. At the Kangaroo Caves area the cobalt-nickel ratio of pyrite can be used as an exploration vector towards high-grade zinc-copper mineralization.

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The King Leopold and Halls Creek Orogens in the Kimberley region of northern Australia are divided into three distinct terranes, each representing a different tectonic setting, that may be part of a larger, diverse collisional orogen on a scale similar to the present Alpine-Himalayan Orogen. Collision with the Kimberley Craton drove intracratonic deformation in the adjacent Tanami and Arunta regions of the North Australian Craton. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The 2005 Tanami Seismic Collaborative Research Project was developed to provide a better understanding of the crustal architecture and mineral systems of the Tanami region within Western Australia and the Northern Territory. This was achieved through the acquisition of four regional scale deep crustal seismic reflection profiles. The Tanami Seismic Collaborative Research Project involved Geoscience Australia, the Northern Territory Geological Survey, the Geological Survey Western Australia, Newmont Exploration Pty Ltd and Tanami Gold NL. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The Pine Creek Orogen (PCO) is part of the North Australian Craton and is correlated with other Palaeoproterozoic domains of northern Australia. Archaean (>2.5 Ga - 2.7 Ga) granite and metamorphics are overlain by Palaeoproterozoic strata comprising sandstone, mudstone, and minor carbonates and volcanics. Its age is constrained between 2.5 Ga and 1.86 Ga, and the succession is divided into two supergroups. The older Woodcutters Supergroup comprises <2.5 Ga to 2.02 Ga arenites, stromatolitic dolostone, and pyritic carbonaceous shale. The younger Cosmo Supergroup comprises BIF, mudstone, and tuff, succeeded by a monotonous flysch sequence. Zircons from the tuff beds provided an age of 1863 Ma, confirming a major depositional break of about 150 million years. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • Sediment-hosted Pb-Zn (SH Pb-Zn) deposits can be divided into two sub-types: 'clastic-dominated lead-zinc' (CD Pb-Zn) ores hosted in shale, sandstone, siltstone, mixed clastic or as carbonate replacement within a clastic dominated sedimentary sequence and Mississippi Valley-type (MVT Pb-Zn) ores that occurs in platform carbonate sequences, typically in a passive margin tectonic setting. The emergence of CD and MVT deposits in the rock record between 2.02 Ga, the age of the earliest known deposit of these ores, and 1.85-1.58 Ga, a major period of CD Pb-Zn mineralization in Australia and India, corresponds to a time after the 'Great Oxygenation Event' (GOE) ca 2.4 to 1.8 Ga. Contributing to the blooming of CD deposits at ca 1.85-1.58 Ga was the following: a) enhanced oxidation of sulfides in the Earth's crust that provided sulfate and lead and zinc to the hydrosphere; b) development of major redox and compositional gradients in the oceans; c) first formation of significant sulfate-bearing evaporites; d) formation of red beds and oxidized aquifers: e) evolution of sulfate-reducing bacteria; and f) the formation of large and long-lived basins on stable cratons. A significant limitation imposed on interpreting the secular distribution of the deposits is that presently, there is no way to quantitatively evaluate the removal of deposits from the rock record through tectonic recycling. Considering that most of the sedimentary rock record has been recycled, probably most SH Pb-Zn deposits have also been destroyed by subduction and erosion or modified by metamorphism and tectonism so that they are no longer recognizable. Thus, the uneven secular distribution of SH Pb-Zn deposits reflects the genesis of these deposits, linked to Earth's evolving tectonic and geochemical systems, as well a record severely censored by an unknown amount of recycling of the sedimentary rock record.

  • Although there is general agreement that the western two-thirds of Australia was assembled from disparate blocks during the Proterozoic, the details of this assembly are difficult to resolve, mainly due to ambiguous and often conflicting data sets. Many types of ore deposits form and are preserved in specific geodynamic environments. For example, porphyry-epithermal, volcanic-hosted massive sulfide (VHMS), and lode gold deposits are mostly associated with convergent margins. The spatial and temporal distributions of these and other deposits in Proterozoic Australia may provide another additional constraints on the geodynamic assembly of Proterozoic Australia. For example, the distribution of 1805-1765 Ma lode gold and VHMS deposits in the North Australian Element, one of the major building block of Proterozoic Australia, supports previous interpretations of a convergent margin to the south, and is consistent with the distribution of granites with subduction-like signatures. These results imply significant separation between the North and South Australian elements before and during this period. Similarly, the distribution of deposits in the Halls Creek Orogen is compatible with convergence between the Kimberly and Tanami provinces at 1865-1840 Ma, and the characteristics of the deposits in the Mount Isa and Georgetown provinces are most compatible with extension at 1700-1650 Ma, either in a back-arc basin or as a consequence of the break-up of Nuna.

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The southern Arunta region contains a number of small (<5 Mt) Zn-Cu-Pb (Ag-Au) deposits. Although none of these deposits are economic, they do indicate a moderate level of base-metal potential for this region. Most of these deposits are located in the Strangways Range, which forms part of the Aileron Province. These deposits were classified as Oonagalabi-type deposits by Warren & Shaw (1985), citing similarities in metal assemblages, alteration assemblages, and host units, and interpreted as volcanic-hosted massive sulphide (VHMS) deposits. More detailed geological mapping and geochemical and geochronological data suggest that the Oonagalabi group should be subdivided further into three types, the Utnalanama-type, the re-defined Oonagalabi-type and the Johnnies-type (Hussey et al., 2005). <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • The map of iron oxide copper-gold (IOCG) potential of the Gawler Craton, South Australia, shows the spatial distribution of key 'essential ingredients' of IOCG ore-forming systems. These 'ingredients' include: (a) rock units of the Gawler Range-Hiltaba Volcano-Plutonic Association, subdivided by supersuite; (b) faults/shear zones subdivided by interpreted age of youngest significant movement; (c) copper geochemistry (>200ppm), from drill holes intersecting crystalline basement (Mesoproterozoic and older); (d) hydrothermal alteration assemblages and zones, based on drill hole logging, potential-field interpretation, and inversion modelling of potential-field data; and (e) host sequence units considered important in localising IOCG alteration and mineralisation. Also shown are Nd isotopic data and the mineral isotopic ages of late Palaeoproterozoic to early Mesoproterozoic magmatism and hydrothermal minerals. Areas with the greatest number of 'essential ingredients' are considered to have the maximum potential for IOCG mineralisation. IOCG potential of the Gawler Craton is shown as domains with ranks from 1 to 4, with 1 being the highest rank. Notes detailing the sources of data and methods used in constructing the map are provided in a separate file available on the Geoscience Australia website.

  • Presented at the Evolution and metallogenesis of the North Australian Craton Conference, 20-22 June 2006, Alice Springs. The Warumpi Province is an east-trending 1690 Ma - 1600 Ma terrane which extends for >500 km along the southwestern margin of the Arunta Region. It is interpreted to be an exotic terrane that accreted onto the southern margin of the North Australian Craton (NAC) at 1640 Ma (Scrimgeour et al 2005a). The evolution of the Warumpi Province from 1690 Ma to 350 Ma has been constrained through integrated lithological, structural and metamorphic mapping, geochemical and isotopic analysis, and geophysical interpretation (Scrimgeour et al 2005b). The Warumpi Province has been subdivided into three domains that have differing protolith ages and structural and metamorphic histories: the amphibolite facies Haasts Bluff Domain in the south and east, the granulite facies Yaya Domain in the north, and the greenschist facies Kintore Domain in the west. The Warumpi Province can be viewed as greenfields in terms of minerals exploration and has the potential to host a variety of mineralisation styles including base metals (BHT, VMS), IOCG, and diamonds. No modern mineral exploration has been undertaken within the Warumpi Province. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=64764">Evolution and metallogenesis of the North Australian Craton Conference Abstracts</p>

  • Extended abstract of metalogenic implications of seismic and allied results in North Queensland